Earth Observing System (EOS)

Tropospheric Emission Spectrometer (TES)

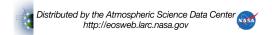
Science Data Processing

Standard and Special Observation

Data Products Specifications

Author: Scott Lewicki

Version 9.0 (Science Software Release 9.0)


D-22993

December 13, 2005

JPL

Jet Propulsion Laboration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Earth Observing System (EOS)
Tropospheric Emission Spectrometer (TES)
Science Data Processing
Standard and Special Observation
Data Products Specifications
Data Products Specifications

Author: Scott Lewicki

Version 9.0 (Science Software Release 9.0)

D-22993

ved by:	
Dr. Reinhard Beer TES Principal Investigator, JPL	D. Shepard TES System Engineering PEM
R. Toaz TES GDS Manager, JPL	

December 13, 2005

JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

TABLE OF CONTENTS

1.	INTR	ODUCTION	1-1
1	.1 I	dentification	1-1
1	.2	Overview	1-1
1		Document Scope	
1		Method	
1		Controlling Documents	
		Reference Documents	
		Applicable Documents.	
		view of File Structure for TES science data products	
		FES Products in Native HDF 5 Format.	
_	2.1.1		
2		FES Products in HDF-EOS5 Format	
		Versioning of TES Products	
	2.3.1	· · · · · · · · · · · · · · · · · · ·	
2		1B Standard and special observation Products	
		Overview	
_		Nadir or Low Resolution Observations	
3	3.2.1		
2		Limb or High Resolution Observations	
3	3.3.1	Structure of Limb File	
2			
		Spectra and NESR Data	
_		Geolocation Data	
		Engineering Data	
	5.7	Quality Assessment (QA) Data	3-12
3		L1 ECS and TES-specific Metadata	
	3.8.1	Introduction	
	3.8.2	ECS Inventory Metadata	
	3.8.3	Production History Metadata	
	3.8.4	TES-Common Metadata	
	3.8.5	TES-L1B-Common Metadata	
	3.8.6	TES-L1B-Nadir Metadata	
	3.8.7	TES-L1B-Limb Metadata	
	3.8.8	TES-L1B-SO-Low Metadata	
	3.8.9	TES-L1B-SO-High Metadata	
		2 Standard and special observation Products	
4		Overview	
	4.1.1	Standard Products	
	4.1.2	- r	
4		Nadir File Structure	
4		Limb File Structure	
		Ancillary File Structure	
4	1.5 N	Nadir Data Fields	
	4.5.1	Nadir Primary Data Fields	4-8
	4.5.2	Nadir Associated Data Fields	
4	4.6 I	Limb Data Fields	4-12
	4.6.1	Limb Primary Data Fields	4-13
	4.6.2	Limb Associated Data Fields	4-15
4	1.7 A	Ancillary Data Fields	4-17
4		Geolocation Fields	
4	.9 I	L2 ECS and TES-specific Metadata	4-25
	4.9.1	Introduction	4-25
	4.9.2	ECS Inventory Metadata	
		·	

4.9.3 Production History Metadata	4-26
4.9.4 TES-Common Metadata	
4.9.5 TES-L2-Common	4-27
4.9.6 TES-L2-Nadir Metadata	4-28
4.9.7 TES-L2-Limb Metadata	4-28
5. Level 2 Summary Product	5-1
5.1 Overview	5-1
5.2 Summary Product File Structure	5-1
5.3 Nadir Objects Data Fields	
5.3.1 Nadir Primary Data Fields	
5.3.2 Nadir Associated Data Fields	5-4
5.4 Limb Objects Data Fields	5-5
5.4.1 Limb Primary Data Fields	
5.4.2 Limb Associated Data Fields	5-7
5.5 Ancillary Objects Data Fields	
5.6 Geolocation Fields	
5.7 L2 ECS and TES-specific Metadata	
5.7.1 Introduction	
5.7.2 ECS Inventory Metadata	
5.7.3 Production History Metadata	
5.7.4 TES-Common Metadata	
5.7.5 TES-L2-Common	5-15
Appendix A Acronyms	
Appendix B Work-Off Plan Table	B-2

1. INTRODUCTION

1.1 Identification

This is the Data Products Specification (DPS) for the JPL Tropospheric Emission Spectrometer (TES) Project.

1.2 Overview

This document provides the detailed contents and formats for the TES Standard and Special Observation Data Products produced at launch.

1.3 Document Scope

This document provides specifications for all of the TES standard data products identified in the ICD between ECS and SIPS (423-41-57-10, Volume 10) and TES special observation data products. This document provides a source of requirements to Framework for supporting the listed data types and data objects. This document provides a source of requirements to the subsystems for the contents and formats of the standard data products.

1.4 Method

This document provides the detailed contents and formats for the TES standard and special observation data products produced at launch. At that time it represents a baseline to the version of the products. Any changes to the contents or formats of the products after that time cannot occur without an update and re-release of this document

1.5 Controlling Documents

1. JPL D-17961	Level 2 Subsystem Software Requirements
2. 423-41-64	ESDIS Project Requirements for EOS Instruments Team Science Team Science Data Processing Systems, 07-03-2001 (latest version found at http://romulus.gsfc.nasa.gov/PIMS/EMDS.html)
3. 420-TP-022-001	Release 7 Implementation Earth Science Data Model for the ECS Project, May 2004 (latest version can be found at http://edhs1.gsfc.nasa.gov/)
4. NCAR Doc#: SW- NCA-079	HDF-EOS Aura File Format Guidelines
5. 423-41-57-10	Interface Control Document (ICD) between the EOSIDS Core System (ECS) and the Science Investigator-led Processing System (SIPS), Volume 10: Tropospheric Emission Spectrometer (TES) ECS Data Flows
6. JPL D-17962	Level 1B Subsystem Software Requirements Document
7. JPL D-23176	Level-2 Functional Requirements Document

1.6 Reference Documents

1. JPL D-13017	TES Experiment Implementation Plan
2. JPL D-13214	TES Software Management Plan
3. JPL D-8501	Software Management Policies and Requirements for EOS Flight Experiments
4. JPL D-11294	TES Scientific Objectives & Approach, Goals and Requirements
5. JPL D-19450	Ground System Requirements
6. JPL D-15522	Science Software Requirements
7. JPL D-1538	TES Command and Telemetry Handbook
8. 175-TP-510-001	HDF-EOS Interface Based on HDF5, Volume 1: Overview and Examples

1.7 Applicable Documents

9. HAIS 205-CD-002-001	Software Developer's Guide to Preparation, Delivery, Integration and Test with ECS, draft version, January 1995
	EOS Reference Handbook, NASA Goddard Space Flight Center
10. 194-207-SE1-001	System Design Specification for the ECS Project, Hughes Applied Information Systems, June 1994
11. 423-16-01	Data Production Software and Science Computing Facility Standards and Guidelines, EOSDIS, October 1996

2. OVERVIEW OF FILE STRUCTURE FOR TES SCIENCE DATA PRODUCTS

2.1 TES Products in Native HDF 5 Format

The TES standard and special observation data products at Level 1B will be implemented in Native HDF5 format.

2.1.1 HDF 5 Data Types

The HDF 5 library provides a number of datatypes with the naming convention, H5T_arch_base, where arch is an architecture name and base is a programming type name. The architecture (name) used by the TES ESDT product files is NATIVE. The NATIVE architecture is by design the most portable and contains C-like datatypes for the machine on which the library was compiled. These NATIVE type names are defined with the prefix "H5T_" in the HDF C library and are grouped together in the C++ class "PredType" in the HDF 5 C++ API. In this document only the prefix NATIVE and the type are listed.

Table 2-1 below shows an example of how a 32 bit integer type maps to the HDF 5 APIs and how it is listed in this document.

Table 2-1: Mapping of 32-bit Integer to HDF5 APIs

HDF 5 API	API HDF 5 C++ API Lis	
H5T_NATIVE_INT32	PredType::NATIVE_INT32	NATIVE_INT32

2.2 TES Products in HDF-EOS5 Format

TES will be using the HDF-EOS5 file format to store the scientific standard and special observation products at Level 2. The HDF-EOS extension to the HDF5 library provides the capability to incorporate swath mapping of the global survey data as well as compression and complex datatype usage.

2.3 Versioning of TES Products

For standard product granules versioning information has four types and is reported in four places:

- 1. End of standard product filename (and the ECS Metadata object LocalGranuleID for Level 2). Numbers capturing format changes and reruns/reprocessing.
- 2. ECS Metadata object LocalVersionID. Has format: "Executable Name: Clearcase Label"
- 3. ECS Metadata object PGEVersion. Release number, e.g. "R6.1.2".
- 4. Production History. Text block in standard product file.

2.3.1 Versioning in Filenames

The versioning issue covers two major aspects reflecting changes in the name of a data file:

- 1) Data file format changes.
- 2) Data file content changes (coming from reruns or reprocessing)

The following naming conventions should be used to denote changes due to file format/content changes:

<file name>_Fff_cc...

where:

 \mathbf{F} = File Format placeholder

ff = 2-digit version number reflecting file Format changes

cc = 2-digit version number reflecting file Content changes

The following ground rules must be observed:

- 1) The two sets of identifiers may be incremented independent of each other.
- 2) The start default value for each set is 01.
- 3) Neither set can ever revert back to 01 and must always be incremented throughout the file span of the file.
- 4) The value of each set must always be incremented by 1.

The following are the definitions for Format and Content changes of any data file:

Format change:

- 1) Data type changes (new or redefined)
- 2) New/deleted/renamed data fields/structures
- 3) Dimension changes of data fields/structures

The basic rule defining a Format change is any change that must be reflected in the Data Products Specification (DPS), and therefore requires a DPS update. These DPS updates will be disseminated via change pages and captured in Clearcase, with complete releases of a new DPS version at certain time intervals.

Content change:

- 1) Data file created during a PGE re-run with a different set of input files or different environment.
- 2) Data file reprocessing where contents are updated for completeness or better accuracy/algorithm improvement.

The purpose of the content versioning number is only to reflect a particular run version, not the version of the TES science software used during the run. However, the implication would be that any re-processing run of the same PGE using a different input file set would generate product files with new contents, thus indicated by a new value for the cc field of the products' names.

3. LEVEL 1B STANDARD AND SPECIAL OBSERVATION PRODUCTS

3.1 Overview

At Level 1B, TES produces two standard products captured in two ESDTs: TL1BN for nadir-viewed data and TL1BL for limb-viewed data. For Special Observations, there are two "products" one for Low Resolution and one for High Resolution.

The primary data stored within the L1B nadir and limb products are spectra and noise-equivalent spectral radiance (NESR) data. In addition, the standard product files contain geolocation, engineering, production history, and data quality information.

Each L1B standard and special observation product is implemented as four files (one per Focal Plane) each using the native HDF 5 file format. HDF 5 files have a default extension of ".h5". The ECS Local Granule ID (filename) for a L1B standard product is constructed using the following template:

TES-Aura_L1B-<view>_FP<FP>_r<run id>-o<orbit number>_<version id>.h5

The table below lists each of the TES L1B standard products.

Table 3-1: TES L1B Standard Products

ESDT Short Name	ECS File Type	Collection Summary	File Names			
TL1BN	HDF 5	TES Aura L1B Nadir	TES-Aura_L1B-Nadir_FP1A_rnnnnnnnnnnnnnnn_Fff_cc.h5			
			TES-Aura_L1B-Nadir_FP1B_rnnnnnnnnnnnnnn_Fff_cc.h5			
			TES-Aura_L1B-Nadir_FP2A_rnnnnnnnnnn-onnnnn_Fff_cc.h5			
			TES-Aura_L1B-Nadir_FP2B_rnnnnnnnnnnnnnnn_Fff_cc.h5			
TL1BL	HDF 5	TES Aura L1B Limb	TES-Aura_L1B-Limb_FP1A_rnnnnnnnnn-onnnnn_Fff_cc.h5			
			TES-Aura_L1B-Limb_FP1B_rnnnnnnnnnnnnnn_Fff_cc.h5			
			TES-Aura_L1B-Limb_FP2A_rnnnnnnnnn-onnnnn_Fff_cc.h5			
			TES-Aura_L1B-Limb_FP2B_rnnnnnnnnnnnnnnn Fff_cc.h5			

The table below lists each of the TES L1B special observation products.

Table 3-2: TES L1B Special Observation Products

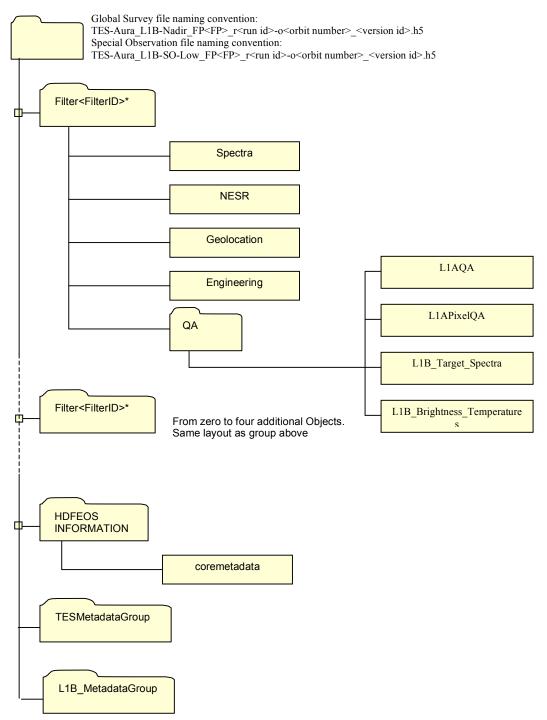
ESDT Short Name	ECS File Type	Collection Summary	File Names
TL1BSOL	HDF 5	TES Aura L1B Special Observation Low Resolution	TES-Aura_L1B-SO-Low_FP1A_rnnnnnnnnnnnnnnnnnnnnnnnfff_cc.h5 TES-Aura_L1B- SO-Low_FP1B_rnnnnnnnnnnnnnnnnnnnnnnnfff_cc.h5 TES-Aura_L1B- SO-Low_FP2A_rnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
TL1BSOH	HDF 5	TES Aura Special Observation High Resolution	TES-Aura_L1B- SO-High_FP1A_rnnnnnnnnnn-onnnnn_Fff_cc.h5 TES-Aura_L1B- SO-High_FP1B_rnnnnnnnnnn-onnnnn_Fff_cc.h5 TES-Aura_L1B- SO-High_FP2A_rnnnnnnnnnn-onnnnn_Fff_cc.h5 TES-Aura_L1B- SO-High_FP2B_rnnnnnnnnnn-onnnnn_Fff_cc.h5

Where the string rnnnnnnnnn represents the ten-digit Run ID, the string onnnnn represents the starting five-digit Absolute Orbit number, the substring "Fff_cc" represents a version ID which is used to keep track of file format changes (see Section 2.3.1).

Note: TES data acquisition begins at the South Pole apex crossing, and subsequent orbits worth of data begin from there for the L1B granules. The Absolute Orbit number in the file name above is the same as the Aura orbit number at the time of the South Pole apex crossing.

For Special Observations, there is the potential for multiple products within a single orbit. These will be differentiated by Run Number. Special Observations which span multiple orbits, i.e. cross the South Pole apex, will be split into separate files.

3.2 Nadir or Low Resolution Observations


The Nadir standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit. The number of observations within an orbit is fixed for a Global Survey, but that number may change if the configuration of the Global Survey is changed.

The Low Resolution special observation product also consists of four files, where each file is composed of special observations from one of four focal planes. A special observation product is of an undetermined length and may be smaller than an orbit or larger.

The filter position for a given focal plane is in the L1B-specific metadata. This filter position determines the dimensions of the filter group objects for each file.

3.2.1 Structure of Nadir File

The structure of each of the Nadir or Low Resolution files contains groups for ECS (HDFEOS INFORMATION) and TES-specific metadata (including Production History) and groups for the data corresponding to specific filters. The data objects within each of these groups are shown in the figure below.

*Where <FilterID> for Nadir for the Filter Plane 1A file can be one of the following: 1A1, 1A2, 1A3, 1A4, or 1A5; for the Filter Plane 1B file can be 1B1 or 1B2; for the Filter Plane 2A file can be 2A1, 2A2, 2A3, or 2A4; and for the Filter Plane 2B file will be 2B1.

3.3 Limb or High Resolution Observations


The Limb standard product consists of four files, where each file is composed of the Global Survey Nadir observations from one of four focal planes for a single orbit. The number of observations within an orbit is fixed for a Global Survey, but that number may change if the configuration of the Global Survey is changed.

The High Resolution special observation product also consists of four files, where each file is composed of special observations from one of four focal planes. A special observation product is of an undetermined length and may be smaller than an orbit or larger.

The filter position for a given focal plane is in the L1B-specific metadata. This filter position determines the dimensions of the filter group objects for each file.

3.3.1 Structure of Limb File

The structure of each of the Limb or High Resolution files contains groups for ECS (HDFEOS INFORMATION) and TES-specific metadata (including Production History) and groups for the data corresponding to specific filters. The data objects within each of these groups are shown in the figure below.

*Where <FilterID> for Limb for the Filter Plane 1A file can be one of the following: 1A1 or 1A2; for the Filter Plane 1B file can be 1B1 or 1B2; for the Filter Plane 2A file can be 2A1, 2A2, 2A3, or 2A4; and for the Filter Plane 2B file will be 2B1.

3.4 Spectra and NESR Data

Each product captures data in four focal planes for each observation. These focal planes are 1A, 1B, 2A, and 2B. For each of these focal planes there are sixteen pixels, 0 through 15. These pixels return 32-bit float data. Along with the spectra data, NESR data has the same characteristics, ranging from pixels 0 through 15 returning 32-bit float data. See tables below for all values and definitions of the sixteen pixels in each of the four focal planes. Each focal plane/filter position has a different number of samples for each spectrum.

Table 3-3: Spectra Data Type Definition

Data Name	Data Description	Units	Data Range	Size	Туре	HDF 5 Type
Spectra	Spectrum radiance	W/cm ²	$-10^{-4} - 10^{-4}$	32	float	NATIVE_FLOAT
	sample.	/sr/cm ⁻¹	(fill= -999.)			

Table 3-4: NESR Data Type Definition

Data Name	Data Description	Units	Data Range	Size	Туре	HDF 5 Type
NESR	Noise equivalent spectral radiance sample.	W/cm ² /sr/cm ⁻¹	-10 ⁻⁵ – 10 ⁻⁵ (fill= -999.)	32	float	NATIVE_FLOAT

Table 3-5: Focal Plane Data Dimensions

Dimension Name	Dimension Description	Dimension Size
TES_pixel_dim	Number of pixels in a TES focal plane.	16
Observations_dim	Number of sequences.	variable
Spectra_Samples_dim	Number of samples for Spectra & NESR	configurable

Dimensions are implemented in the file in "C" order, i.e. last dimension is the fastest.

Table 3-6: Focal Plane Spectra Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
Spectra	Contains spectra data for all sixteen pixels in the focal plane for a nadir or a limb scan.	TES_pixel_dim Observations_dim Spectra Samples dim	Spectrum_type

Table 3-7: Focal Plane NESR Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
NESR	Contains NESR data for all sixteen pixels in the focal plane for a nadir or a limb scan.	TES_pixel_dim Observations_dim Spectra Samples dim	NESR_type

3.5 Geolocation Data

For the Nadir-viewing product files (Low or High resolution), the geolocation is calculated from the boresight. For the Limb-viewing product files (Low or High resolution), the geolocation is calculated from the tangential height.

Table 3-8: Geolocation Dataset

Dataset Name	Dataset Description	Dimension List	Data Type
Geolocation	Contains geolocation data for each	Observations_dim	Geolocation_type
	sequence.		

Table 3-9: Geolocation Dataset Dimensions

Dimension Name	Dimension Description	Dimension Size
Observationss _dim	Number of observations.	variable

The Geolocation Dataset is implemented as a compound data type (for each Observations_dim) with the following definition.

Table 3-10: Geolocation Data Type Definition: Geolocation_type

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Time_of_Geolocation	Time of ZPD (Zero Path Difference)	TAI 93 time		64	NATIVE_DOUBLE
Geolocation_Failed	Failure indicator. False = 0 True = 1 If True, the following data fields will be set to zero or are suspect.	N/A	01	8	NATIVE_INT8
OrbitAscendingFlag	Ascending node = 1 Descending node = 0	N/A	01	8	NATIVE_INT8
Path_Number	Aura Path Number	N/A	1233	8	NATIVE_UINT8
PCS_QA_Poor_Percentage	Percent data interpolated	N/A	0100	8	NATIVE_INT8
DPREP_QA_Poor_Percentage	Percent data interpolated	N/A	0100	8	NATIVE_INT8
Orbit_Inclination_Angle	Orbit Inclination Angle	Decimal degrees	0180	64	NATIVE_DOUBLE
Latitude	Ground boresight location	Decimal degrees	±90.0	64	NATIVE_DOUBLE
Longitude	Ground boresight location	Decimal degrees	±180.0	64	NATIVE_DOUBLE
Elevation	Ground boresight elevation	Meters	-1000 100,000	32	NATIVE_FLOAT
Horizontal_Uncertainty	Uncertainty in geolocation horizontal position	Meters	-100,000 100,000	32	NATIVE_FLOAT
Elevation_Uncertainty	Uncertainty in geolocation elevation	Meters	-1000 100,000	32	NATIVE_FLOAT
Latitude_Footprint_1	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_2	footprint. Nadir footprint determined by field of view of pixels. Limb	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_3	footprint is ±60 km track, ±12 km crosstrack from surface expression	Decimal degrees	±90	64	NATIVE_DOUBLE

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Latitude_Footprint_4	of boresight tangent point. Latitude_Footprint_1=LowerLeft Latitude_Footprint_2=LowerRight Latitude_Footprint_3=UpperRight Latitude_Footprint_4=UpperLeft	Decimal degrees	±90	64	NATIVE_DOUBLE
Longitude_Footprint_1	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_2	footprint. Nadir footprint determined by field of view of pixels. Limb	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_3	footprint is ±60 km track, ±12 km crosstrack from surface expression of boresight tangent point	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_4	Longitude_Footprint_1=LowerLeft Longitude_Footprint_2=LowerRight Longitude_Footprint_3=UpperRight Longitude_Footprint_4=UpperLeft	Decimal degrees	±180	64	NATIVE_DOUBLE
SurfaceElevation	Average elevation over the footprint	Meters	-1000 100,000	32	NATIVE_FLOAT
SurfaceElevStandardDeviation	Standard deviation of elevation over the footprint	Meters	-1000 100,000	32	NATIVE_FLOAT
Min_Elev_Footprint	Lowest elevation over the footprint	Meters	-1000 100,000	32	NATIVE_FLOAT
Max_Elev_Footprint	Greatest elevation over the footprint	Meters	-1000 100,000	32	NATIVE_FLOAT
Surface_Type_Footprint	From DEM, 1=Fresh Water, 2=Salt Water, 3=Land, 4=Mixed (not 100% of FW, SW, or Land)	Enumer- ated	14	8	NATIVE_INT8
Day_Night_Flag_Target	0=Night (False), 1=Day (True)	T/F	01	8	NATIVE_INT8
Day_Night_Flag_SC	0=Night (False), 1=Day (True)	T/F	01	8	NATIVE_INT8
LocalSolarTime	Local Mean Solar Time (hours from midnight)	Hours	0.024.0	32	NATIVE_FLOAT
TES_Bsight_Azimuth	TES boresight (LOS) azimuth angle relative to the local north at SC	Decimal degrees	0360	64	NATIVE_DOUBLE
TES_Bsight_Azimuth_Uncert	Uncertainty in TES boresight azimuth angle	Decimal degrees	±180	64	NATIVE_DOUBLE
TESBoresightNadirAngle	TES boresight (LOS) nadir angle relative to the local nadir at SC	Decimal degrees	090	64	NATIVE_DOUBLE
TES_Bsight_Nadir_Uncert	Uncertainty in TES boresight nadir angle	Decimal degrees	±90	64	NATIVE_DOUBLE
Grd_Trk_TES_Bsight_Azimuth	TES boresight (LOS) azimuth angle relative to the local ground track	Decimal degrees	0360	64	NATIVE_DOUBLE
SpacecraftAzimuth	TES boresight (LOS) azimuth angle relative to the local north at the geolocation	Decimal degrees	0360	64	NATIVE_DOUBLE
SpacecraftZenith	TES boresight (LOS) zenith angle relative to the local zenith at the geolocation	Decimal degrees	0180	64	NATIVE_DOUBLE
Tgt_Sun_Azimuth	Solar azimuth angle relative to the local north at the geolocation	Decimal degrees	0360	64	NATIVE_DOUBLE
Tgt_Sun_Zenith_Angle	Solar zenith angle relative to the local zenith at the geolocation	Decimal degrees	0180	64	NATIVE_DOUBLE
SolarAzimuthAngle	Solar azimuth angle relative to the local north at spacecraft point at ZPD time	Decimal degrees	0360	64	NATIVE_DOUBLE
SolarZenithAngle	Solar zenith angle relative to the local zenith at spacecraft point at ZPD time	Decimal degrees	0180	64	NATIVE_DOUBLE
M1_Mirror_Sun_Angle	Angle between M1 mirror normal and the sun	Decimal degrees	0180	64	NATIVE_DOUBLE
SpacecraftLatitude	Geodetic latitude	Decimal degrees	±90	64	NATIVE_DOUBLE

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
SpacecraftLongitude	Geodetic longitude	Decimal degrees	±180	64	NATIVE_DOUBLE
SpacecraftAltitude	Geodetic spacecraft altitude (w/ respect to geoid)	Meters	-1000 10,000,000	64	NATIVE_DOUBLE
Doppler_Shift	Relative frequency shift due to Doppler effect.	N/A		64	NATIVE_DOUBLE
Resolved_SC_Position_X	From ground corrected ephemeris	meters	±8,000,000	64	NATIVE_DOUBLE
Resolved_SC_Position_Y	From ground corrected ephemeris	meters	±8,000,000	64	NATIVE_DOUBLE
Resolved_SC_Position_Z	From ground corrected ephemeris	meters	±8,000,000	64	NATIVE_DOUBLE
Resolved_SC_Velocity_X	From ground corrected ephemeris	meters/ sec	±10,000.0	64	NATIVE_DOUBLE
Resolved_SC_Velocity_Y	From ground corrected ephemeris	meters/ sec	±10,000.0	64	NATIVE_DOUBLE
Resolved_SC_Velocity_Z	From ground corrected ephemeris	meters/ sec	±10,000 .0	64	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q1	From ground corrected ephemeris	N/A	-1.01.0	64	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q2	From ground corrected ephemeris	N/A	-1.01.0	64	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q3	From ground corrected ephemeris	N/A	-1.01.0	64	NATIVE_DOUBLE
Resolved_SC_Quaternion_Q4	From ground corrected ephemeris	N/A	-1.01.0	64	NATIVE_DOUBLE
Resolved_SC_Attitude_Pitch	From ground corrected attitude	Decimal degrees	±90	64	NATIVE_DOUBLE
Resolved_SC_Attitude_Roll	From ground corrected attitude	Decimal degrees	±90	64	NATIVE_DOUBLE
Resolved_SC_Attitude_Yaw	From ground corrected attitude	Decimal degrees	±90	64	NATIVE_DOUBLE
Resolved_SC_Pitch_Rate	From ground corrected attitude	deg/sec	±0.3	64	NATIVE_DOUBLE
Resolved_SC_Roll_Rate	From ground corrected attitude	deg/sec	±0.3	64	NATIVE_DOUBLE
Resolved_SC_Yaw_Rate	From ground corrected attitude	deg/sec	±0.3	64	NATIVE_DOUBLE
PCS_Track	PCS track resolver position at time of ZPD	Decimal degrees		64	NATIVE_DOUBLE
PCS_Crosstrack	PCS crosstrack resolver position at time of ZPD	Decimal degrees		64	NATIVE_DOUBLE

3.6 Engineering Data

Table 3-11: Engineering Dataset

Dataset Name	Dataset Description	Dimension List	Data Type	
Engineering	Contains engineering data.	Observations_dim	Engineering_type	

Table 3-12: Engineering Dataset Dimensions

Dimension Name	Dimension Description	Dimension Size
Observations_dim	Number of observations.	variable

The Engineering Dataset is implemented as a compound data type (for each Observation_dim) with the following definition.

Table 3-13: Engineering Dataset Type Definition: Engineering_type

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Scan	Scan number in sequence.	n/a	>0	8	NATIVE_INT8
Sequence	Sequence number in run.	n/a	>0	16	NATIVE_INT16
Time_of_Observation	Time of ZPD (Zero Path Difference)	TAI93		64	NATIVE_DOUBLE
Filter_Identification	Optical Filter Identification		For FP1A: "1", "2", "3", "4", or "5" For FP1B: "1" or "2" For FP2A: "1", "2", "3", or "4" For FP2B: "1"	8	NATIVE_CHAR
ADC_Enabled	Analog to Digital sampling		0 = enabled 1 = off	16	NATIVE_INT16
Elect_Filter	Filter Center Frequency	kHz	For FP1A: 0 = 8.8 kHz, 1 = 9.8, 2 = 10.7, 3 = 11.5, 4 = 12.4, 5 = DC For FP1B: 0 = 4.0, 1 = 4.4, 5 = DC For FP2A: 0 = 5.1, 1 = 6.0, 2 = 6.9, 3 = 7.7, 5 = DC For FP2B: 0 = 3.3, 5 = DC	32	NATIVE_FLOAT
Fringe_Clock_Divisor	Sets ADC Sampling Rate		815	16	NATIVE_INT16
AT_Index	Indicator as to whether the Filter Wheel is at a predetermined index point.		0, 1	8	NATIVE_INT8

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Filter_Wheel_Index	Filter Wheel Index position		For FP1A:	16	NATIVE_INT16
			0 = 1A4,		
			7 = 1A5,		
			6 = 1A1,		
			5 = 1A2,		
			4 = 1A3		
			For FP1B:		
			5 = 1B2, 4 = 1B1		
			For FP2A:		
			1 = 2A4,		
			0 = 2A1,		
			7 = 2A3,		
			6 = 2A2		
			For FP2B:		
			3 = 2B1		
Signal_Chain_Gain	Mapping from signal chain		0.5, 1.0, 2.0, 4.0, 32.0	32	NATIVE_FLOAT
0	(1A, 1B, 2A, 2B) to a gain factor.		Fill = -999.0		_
Detector_Temp	Measurement of a given focal	K	60 – 361	32	NATIVE_FLOAT
	plane detector temperature.		Fill = -999.0		
Observation_Type	TES Defined Scans		140	16	NATIVE_INT16
ICS_Scan_Direction	Arm scan direction:		"0", "1"	8	NATIVE_CHAR
	0 = reverse				
	1 = forward				
Blackbody_Wall_Temp_#1	Blackbody Wall Temperature	K	213 – 349	32	NATIVE_FLOAT
	#1 from the Calibration Subsystem Electronics board.		Fill = -999.0		
Blackbody_Wall_Temp_#2	Blackbody Wall Temperature	K	213 – 349	32	NATIVE FLOAT
Blackbody_Wall_Tellip_li2	#2 from the Calibration	1.	Fill = -999.0	32	TWITT E E E
	Subsystem Electronics board.		7,7,1		
Cold_Reference_Plate_Temp_#1	Cold Reference Plate	K	160 – 361	32	NATIVE_FLOAT
	Temperature #1 from the Operational Support		Fill = -999.0		
	Electronics board.				
Cold_Reference_Plate_Temp_#2	Cold Reference Plate	K	160 – 361	32	NATIVE_FLOAT
	Temperature #2 from the		Fill = -999.0		_
	Operational Support				
Doomanlittan Taman #1	Electronics board.	V	160 261	22	NATIVE ELOAT
Beamsplitter_Temp_#1	Beamsplitter Temperature #1 from the Operational Support	K	160 – 361	32	NATIVE_FLOAT
	Electronics board.		Fill = -999.0		
Beamsplitter_Temp_#2	Beamsplitter Temperature #2	K	160 – 361	32	NATIVE_FLOAT
1 _ 1_	from the Operational Support		Fill = -999.0		_
	Electronics board.				
Foreoptics_Temp	Foreoptics Temperature from	K	168 – 359	32	NATIVE_FLOAT
	the Engineering Data Interface board.		Fill = -999.0		
M1_Mirror_Temp	M1 Mirror Temperature from	K	173 – 364	32	NATIVE FLOAT
	the Postiioning Control		Fill = -999.0		
	Subsystem electonics board.				
M2_Mirror_Temp	M2 Mirror Temperature from	K	198 – 359	32	NATIVE_FLOAT
	the Postiioning Control Subsystem electonics board.		Fill = -999.0		
Calibration_SS_Resistor_1	Provides the measurement	Ohms	Fill = -999.0	32	NATIVE_FLOAT
Canoration_55_Resistor_1	data for Calibration	Omns	1111	34	TATIVE_FEOAT
	Subsystem Calibration				
	Resistor 1 from the				
	Calibration Subsystem				

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Calibration_SS_Resistor_2	Provides the measurement data for Calibration Subsystem Calibration Resistor 2 from the Calibration Subsystem Electronics board.	Ohms	Fill = -999.0	32	NATIVE_FLOAT
OSE_Resistor_1	Provides the measurement data for OSE Calibration Resistor 1 from the Operational Support Electronics board.	Ohms	Fill = -999.0	32	NATIVE_FLOAT
OSE_Resistor_2	Provides the measurement data for OSE Calibration Resistor 2 from the Operational Support Electronics board.	Ohms	Fill = -999.0	32	NATIVE_FLOAT

3.7 Quality Assessment (QA) Data

Quality data consists of quality flags for the scan level and quality flags for all sixteen pixels in each focal plane. Each focal plane will contain this set of quality data.

QA data are placed in the following groups. Within each group are datasets listed in subsequent tables.

Table 3-14: QA Groups

Group Name	Datasets Description	Dimension List
L1AQA	Contains quality datasets for all sixteen pixels in each focal plane for a scan within a sequence.	Observations_dim
L1APixelQA	Contains L1A quality datasets for each pixel in a specific filter for an observation	TES_pixel_dim Observations_dim
L1B_Target_Spectra	Contains L1B Target Spectra datasets	TES_pixel_dim Observations_dim
L1B_Brightness_Temperatures	Contains L1B Brightness Temperatures datasets	TES_pixel_dim (limb only) Observations_dim

Table 3-15: QA Datasets Dimensions

Dimension Name	Dimension Description	Dimension Size
TES_pixel_dim	Number of pixels in a TES focal plane.	16
Observations_dim	Number of observations.	variable

The following is a list of the L1A QA datasets.

Table 3-16: L1AQA Group Datasets

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
L1A_Ifgm_Dropout_Occurred	Missing packet	N/A	True=1	8	NATIVE_INT8
			False=0		
			Not Processed=9		
L1A_Time_Date_Error_Occurred	Error in header	N/A	True=1	8	NATIVE_INT8
			False=0		
			Not Processed=9		
L1A_Sequence_Error_Occurred	Error in run, sequence,	N/A	True=1	8	NATIVE_INT8
	scan		False=0		
			Not Processed=9		
L1A_Filter_Seq_Error_Occurred	Filter wheel position not	N/A	True=1	8	NATIVE_INT8
	as expected		False=0		
			Not Processed=9		
L1A_SC_Attitude_Out_Of_Spec	Attitude not as expected	N/A	True=1	8	NATIVE_INT8
			False=0		
			Not Processed=9		
L1A_ICS_Direction_Out_Of_Sequence	ICS Scan direction not as	N/A	True=1	8	NATIVE_INT8
	expected		False=0		
			Not Processed=9		
L1A_ICS_Speed_Variation_Out_Of_	ICS speed variation over	N/A	02	8	NATIVE_INT8
Specification	spec		Not Processed=9		
L1A_BB_Temperature_Out_Of_	Black body temperatures	N/A	True=1	8	NATIVE_INT8
Specification	out of spec		False=0		
			Not Processed=9		
L1A_Cold_Ref_Plate_Temperature_	Cold Reference Plate	N/A	True=1	8	NATIVE_INT8
Out_Of_Specification	temperature out of spec.		False=0		
			Not Processed=9		
L1A_Engineering_Temperatures_Out_Of	Any High Rate PRT not	N/A	02	8	NATIVE_INT8
_Specification	specified		Not Processed=9		
L1A_Channel_Shift	Indicates detected	N/A	0=no shift	8	NATIVE_INT8
	telemetry channel shift		-115=shift		
			Not		
			Processed=9		

The following is a list of the L1A Pixel QA datasets. They are dimensioned Observations_dim x TES_pixel_dim.

Table 3-17: L1APixelQA Group Datasets

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
L1A_Spike_Occurred	10x neighboring values	N/A	True=1	8	NATIVE_INT8
			False=0		
			Not Processed=9		
L1A_DN_Overflow_Occurred	DN > tolerance	N/A	True=1	8	NATIVE_INT8
			False=0		
			Not Processed=9		
L1A_DN_Underflow_Occurred	DN < tolerance	N/A	True=1	8	NATIVE_INT8
			False=0		
			Not Processed=9		

For the following tables, Flags have the definition:

- -1 = the error/quality measurement and check was not performed.
- 0 = the error/quality measurement was done, and the measurement did not exceed tolerance (SUCCESS).
- +1 = the error/quality measurement was done, and the measurement exceeded tolerance (FAILURE).

The following datasets in L1B Target Spectra Quality are dimensioned Observations_dim x TES_pixel_dim.

Table 3-18: L1B_Target_Spectra Group Quality Datasets

Data Name	Data Description	Unit s	Data Range	Size	HDF 5 Type
L1B_Zero_Padding	the ratio of zero padding size to the FFT size	N/A	0.0–1.0 Fill = -999.0	32	NATIVE_FLOAT
L1B_Zero_Padding_Flag		N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_Missing_Cal_Table_Flag	at least one calibration table is missing	N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_Cal_Table_Quality_Flag	at least one calibration table has <i>suspicious</i> quality	N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_Phase_Alignment	the chi-square of the imaginary of calibration ratio is too large	N/A	>= 0 Fill = -999.0	32	NATIVE_FLOAT
L1B_Phase_Alignment_Flag		N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_Absolute_Radiance_Mean_BT	The mean of the absolute value of real target spectra after radiometric calib.		>=0; 10 ⁻⁵ Fill = -999.0	32	NATIVE_FLOAT
L1B_Absolute_Radiance_Mean_BT_Flag		N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_NESR_Mean	NESR mean between full in-band range (full power points)		>= 0; 10 ⁻⁶ Fill = -999.0	32	NATIVE_FLOAT
L1B_NESR_Mean_Flag		N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_Imaginary_RMS	target spectrum imaginary RMS between half power points		>= 0; 10 ⁻⁶	32	NATIVE_FLOAT
L1B_Imaginary_RMS_Flag		N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8

Data Name	Data Description	Unit s	Data Range	Size	HDF 5 Type
L1B_Imaginary_Mean	target spectrum imaginary mean between half power points		+/-10 ⁻⁷	32	NATIVE_FLOAT
L1B_Imaginary_Mean_Flag		N/A	-1,0,+1 Not Processed=9	8	NATIVE_INT8
L1B_General_Quality_Flag	See notes below	N/A	0,+1 Not Processed=9	8	NATIVE_INT8
L1B_General_Error_Flag	See notes below	N/A	0,+1 Not Processed=9	8	NATIVE_INT8

L1B_General_Quality_Flag and L1B_General_Error_Flag are binary flags they are set to 0 (good) or 1 (bad).

L1B_General_Error_Flag set equal to 1 means that at some processing step an error was detected, and the spectrum was dropped. A spectrum with its L1B_General_Error_Flag set to 1 will not appear in the final product.

L1B_General_Quality_Flag set equal to 1 means that the spectrum may have some quality problem. A spectrum that just has some quality problem does appear in final L1B product.

The following datasets in L1B Nadir Brightness Temperatures are dimensioned only by Observations dim.

Table 3-19: L1B_Brightness_Temperatures Group Datasets for Nadir

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
L1B_Nadir_BT_11	Average brightness temperature in band 11		-100.0—1000.0 Fill = -999.0	32	NATIVE_FLOAT
L1B_Nadir_BT_12	Average brightness temperature in band 12		-100.0—1000.0 Fill = -999.0	32	NATIVE_FLOAT
L1B_Nadir_BT_8	Average brightness temperature in band 8		-100.0—1000.0 Fill = -999.0	32	NATIVE_FLOAT
L1B_Nadir_BT_5	Average brightness temperature in band 5		-100.0—1000.0 Fill = -999.0	32	NATIVE_FLOAT
L1B_Nadir_BT_10	Average brightness temperature in band 10		-100.0—1000.0 Fill = -999.0	32	NATIVE_FLOAT
L1B_N_Interpixel_Vari_BT10	Measure of variation in BT-10 across all pixels			32	NATIVE_FLOAT
L1B_N_Ipix_Var_Exceeded_BT10	Nadir scene interpixel variability exceeded threshold	N/A	-1 = Test not performed, 0 = False, 1 = True	8	NATIVE_INT8
L1B_N_Interpixel_Vari_BT11	Measure of variation in BT-11 across all pixels			32	NATIVE_FLOAT
L1B_N_Ipix_Var_Exceeded_BT11	Nadir scene interpixel variability exceeded threshold	N/A	-1 = Test not performed, 0 = False, 1 = True	8	NATIVE_INT8

-100.0--1000.0

-100.0—1000.0

Fill = -999.0

Fill = -999.0

32

32

NATIVE_FLOAT

NATIVE FLOAT

The following datasets in L1B Limb Brightness Temperatures are dimensioned Observations_dim x TES pixel dim.

Average brightness temperature in band 5

Average brightness temperature in band 10

Data Name Data Description Units Data Range Size HDF 5 Type NATIVE_FLOAT L1B_Limb_BT_11 Average brightness -100.0-1000.0 32 temperature in band 11 Fill = -999.0 $L1B_Limb_BT_12$ Average brightness -100.0—1000.0 32 NATIVE_FLOAT temperature in band 12 Fill = -999.0-100.0--1000.0 L1B_Limb_BT_8 Average brightness 32 NATIVE_FLOAT temperature in band 8 Fill = -999.0

Table 3-20: L1B Brightness Temperatures Group Datasets for Limb

3.8 L1 ECS and TES-specific Metadata

3.8.1 Introduction

L1B_Limb_BT_5

L1B Limb BT 10

As with all ESDTs, TES ESDTs contain metadata that describes specific attributes about the data or the quality of data contained in the ESDT. Some of the basic metadata items are required by EOSDIS. These data items commonly include basic identification information and other generic information about the particular ESDT. These data items are referred to as ECS Inventory Metadata. In addition to ECS Inventory Metadata, TES ESDTs contain additional metadata more specific to the TES program. The TES-specific metadata has been subdivided into four subcategories based on the uniqueness of its origin and identification:

1.	TES Production History	Production History Metadata
2.	TES-Common	Metadata common to all TES ESDTs
3.	TES-L1B-Common	Metadata common to all Level 1B ESDTs
4.	TES-L1B-observation specific	Metadata unique to a particular ESDT subtype.

TES common metadata are fairly generic to the entire family of TES ESDTs or to TES L1B products. TES-L1B-observation specific, as described by name, are unique to a particular family of L1 ESDTs.


3.8.2 ECS Inventory Metadata

The ECS Inventory Metadata is implemented in the HDF file as text block named coremetadata within a group named HDFEOS INFORMATION.

Table 3-21: ECS Inventory Metadata

Data Layer Name	Data Description	TES Valids	Type ¹	Source
AssociatedInstrumentShortName	Instrument short name supplied by TES project.	TES	VA20	MCF
AssociatedPlatformShortName	Platform short name supplied by EOS project.	Aura	VA20	MCF
AssociatedSensorShortName	Sensor short name supplied by TES project.	FTS	VA20	MCF
OperationMode	Mode of operation of the instrument.	Routine	VA20	MCF

¹ Data types and Source given are specified in document [3] in paragraph 1.5

Data Layer Name	Data Description	TES Valids	Type ¹	Source
ShortName	This name will identify the ESDT short name associat with the collection or granule.	(set in MCF file)	A8	MCF
VersionID	Version identifier of the ESDT data collection.	(set in MCF file)	SI	MCF
ProductionDateTime	The date and time a specific granule was produced by PGE.	YYYY-MM-DDT HH:MM:SS.SSSZ	DT	TK
SizeMBECSDataGranule	The size attribute will indicate the volume of data contained in the granule.		F10	DSS
LocalVersionID	Local version identifier for PGE defined granule versions. Takes the form "executable name: Clearcase label"		VA60	PGE
InputPointer	Description of location of Production History information.	"Production History block at: /TESMetadataGroup/P roductionHistory"	VA255	PGE
ParameterName	Scope of quality flags. For tests, refers to entire granu	Granule	A40	PGE
ScienceQualityFlag	The granule level flag applying generally to the granul and specifically to parameters at the granule level.	Passed Being Investigated Inferred Passed Suspect Failed Not Investigated Inferred Failed	VA25	DP
ScienceQualityFlagExplanation	A text explanation of the criteria used to set the ScienceQualityFlag including thresholds or other criteria.	(Free text)	VA255	DP
RangeBeginningDate	The year, month, and day when the temporal coverage period being described began.	YYYY-MM-DD	DT	PGE
RangeBeginningTime	The first hour, minute, and second of the temporal coverage period being described.	HH:MM:SSSSSSZ	T	PGE
RangeEndingDate	The last year, month, and day when the temporal coverage period being described.	YYYY-MM-DD	DT	PGE
RangeEndingTime	The last hour, minute, and second of the temporal coverage period being described.	HH:MM:SSSSSSZ	T	PGE
PGEVersion	The Release of the PGE software: e.g. "R6.1.2"		A10	PGE

3.8.3 Production History Metadata

The Production History Metadata is implemented as a single text block and written to the HDF file as a file level attribute. The Production History text block contains information about the L1 PGE and the running execution of the PGE to produce ESDT standard products. Static information in the text block describes the elements that make up the PGE like build configuration, support files and database table population. Dynamic information describes all the running parameters involved in a PGE execution for a specific RUN ID. This information is captured for both pre and post execution of the L1 Product PGE.

Table 3-22: L1 Production History

History Data	Data Description	Size (K)	State
ECS	Toolkit file for input/output file specification	23	Dynamic
Environment Variable	SIPS environment variables	5	Dynamic
Fetch	SIPS fetch list from archived	5	Dynamic
SIPS PCF	SIPS-specific PCF file for PGE processing	3	Dynamic
Workspace List (PRE)	File listing in SIPS PGE workspace prior to PGE execution	5	Dynamic
Workspace List (POST)	File listing in SIPS PGE workspace following PGE execution	5	Dynamic

Runtime	CPU and Wallclock PGE run time	0.1	Dynamic
Control Definition	Framework Parameter Definition File for output files	1	Static
Control Parameter	Framework Parameter Specification File for output files	0.02	Static
Control Parameter (Runtime)	Framework Parameter specified in the command line of the PGE	0.02	Dynamic
TimeStamp	RUN ID begin date and end date timestamp	0.05	Dynamic
README	README file that describes production history context	1	Static
PGE Version	PGE version information	0.2	Static
PGE specific configurations	TBD	TBD	TBD

3.8.4 TES-Common Metadata

Metadata shown below is common to all TES files.

Data Description HDF5Type Data Layer Name Units Data Size Range InstrumentName NATIVE_CHAR ProcessLevel L1B,L2,L3,etc. NATIVE CHAR TAI93At0zOfGranule NATIVE_DOUBLE ----GlobalSurveyNumber/ID ----0.. 64 NATIVE INT64 GranuleMonth 1-12 8 NATIVE_INT Month granule was produced (from ECS MD RangeBeginningDate) GranuleDay Day granule was produced (from 1-31 8 NATIVE INT ECS MD RangeBeginningDate) NATIVE INT GranuleYear Year granule was produced (from ECS MD RangeBeginningDate) SurveyMode Type of survey, e.g., Global or NATIVE CHAR Special Release of PGE software: e.g. NATIVE_CHAR **PGEVersion** "R6.1.2" Command Seq ID Command Sequence (Run) ID N/A 32 NATIVE INT32

Table 3-23: TES-Common Metadata

3.8.5 TES-L1B-Common Metadata

Metadata shown below is common to all TES L1B files.

The metadata item L1B_Data_Missing is calculated in the following way:

First, compute total_scans for the file, so for nadir scan is 144 and limb is 216, then compute row_count that is in L1B_tgt_spectra_quality tables. then compute difference between them and multiply it with 4 (number of focal planes) and 16 (number of pixels) and then add error_count found in General_error_flag, which is count of 1's in that file and then divide this number to total scans * 4 * 16 and multiple by 100.

```
As code it looks like:

L1B_Data_Missing =

((((total_scans - row_count) * NUM_FOCAL_PLANE * TES_PIXEL_DIM) + error_count) * 100)

/ ((total_scans * NUM_FOCAL_PLANE * TES_PIXEL_DIM_));
```

Data Name Data Description Units Data Range Size HDF 5 Type NATIVE_INT32 Run_Counter 32 Orbital Path ID 1..233 8 NATIVE UINT8 Absolute_Orbit_Number 32 NATIVE_INT32 Time_Of_Observation_Start TAI time, for first 64 NATIVE_DOUBLE observation in file NATIVE DOUBLE Time Of Observation End TAI time, for last 64 observation in file Geolocation Data Missing No geolocation for 16 NATIVE INT16 observation count 0,1 NATIVE_INT IceContamination Ice contamination exceeded N/A 8 threshold. L1A_Data_Missing Sum of missing scans and 0..100.0 32 NATIVE_FLOAT N/A bad quality scans (per pixel) written as a percentage of the total number of scans for all focal planes at Level 1A L1B_Data_Missing Sum of missing scans and N/A 0..100.0 32 $NATIVE_FLOAT$ bad quality scans (per pixel) written as a percentage of the total number of scans for all focal planes at Level 1B

Table 3-24: TES-L1B-Common Metadata

3.8.6 TES-L1B-Nadir Metadata

Metadata shown below is present only in TES L1B Nadir files.

Table 3-25: TES-L1B-Nadir Metadata

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Start_Frequency	Start Frequency		500 - 3200	64	NATIVE_DOUBLE
Delta Frequency	Frequency step size		.011	64	NATIVE_DOUBLE

3.8.7 TES-L1B-Limb Metadata

Metadata shown below is present only in TES L1B Limb files.

Table 3-26: TES-L1B-Limb Metadata

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Start_Frequency	Start Frequency		500 - 3200	64	NATIVE_DOUBLE
Delta Frequency	Frequency step size		.011	64	NATIVE_DOUBLE

3.8.8 TES-L1B-SO-Low Metadata

Metadata shown below is present only in TES L1B SO Low-Resolution files.

Table 3-27: TES-L1B-SO-Low Metadata

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Start_Frequency	Start Frequency		500 - 3200	64	NATIVE_DOUBLE
Delta Frequency	Frequency step size		.011	64	NATIVE_DOUBLE
Observation_View	Specify Nadir or Limb view	n/a	'Nadir', 'Limb'		NATIVE_CHAR

3.8.9 TES-L1B-SO-High Metadata

Metadata shown below is present only in TES L1B SO High-Resolution files.

Table 3-28: TES-L1B-SO-High Metadata

Data Name	Data Description	Units	Data Range	Size	HDF 5 Type
Start_Frequency	Start Frequency		500 - 3200	64	NATIVE_DOUBLE
Delta_Frequency	Frequency step size		.011	64	NATIVE_DOUBLE
Observation_View	Specify Nadir or Limb	n/a	'Nadir', 'Limb'		NATIVE_CHAR

4. LEVEL 2 STANDARD AND SPECIAL OBSERVATION PRODUCTS

4.1 Overview

The TES Level 2 (L2) subsystem generates information pertaining to the abundance of trace gases in the troposphere from analysis of spectra generated from the TES Level 1B subsystem. These spectra are evaluated by L2 using modeling algorithms collectively referred to as *retrieval*. An iterative process, retrieval compares an observed spectra to a modeled spectra, determines their similarity/dissimilarity, and the modifies the modeled spectra. Nominally, the retrieval process is repeated until the modeled spectra matches the observed spectra within certain tolerances. In addition to retrieving information pertaining to the distribution of trace atmospheric gases, L2 retrieves temperature information for the sampled atmosphere. The "retrieved" information is stored for later generation of L2 Products.

Before L2 can generate its products, the retrieval process is completed for all target scenes comprising a global survey or Special Observation run. A Global Survey consists of 16 consecutive orbits at the start of a two-day cycle. A Special Observation run may be less than one orbit or span multiple orbits. There can be more than one Special Observation run in a single orbit.

Once all retrievals are performed, L2 products are produced. While each retrieval yields information pertaining to several trace molecules (and temperature), L2 products include information for one molecular species (or temperature) for an entire global survey or Special Observation run. Data are oriented in this fashion to facilitate science evaluations where only one or a minimal set of atmospheric gases are involved.

4.1.1 Standard Products

L2 standard data products are segregated by observation type (limb and nadir) to minimize the use of fill data. For nadir observations, TES L2 standard products are produced for the following molecular species: H_2O , O_3 , CH_4 , CO, CH_4 , CO,

HDO NO2 CO H2O О3 CH4 HNO3 AtmT Nadir Swath Object Χ X X Χ X X Limb Swath Object X X X

Table 4-1: View and Species Types

To minimize the duplication of information among all these standard products, an additional standard product, termed an TES L2 Ancillary Data product, will be generated as well. All TES L2 standard products report this information along a uniform UARS pressure grid ordered from ground to space.

To facilitate sharing data products between all Aura platform science teams, the organization of the L2 Standard Data Products conforms to specifications dictated in the <u>HDF-EOS Aura File Format Guidelines</u> (Craig, et al). These guidelines lay down the basic file format and data format specifications for all L2 standard products. While the specific referenced document should be checked for details, the guidelines specify that all L2 standard products should be generated using HDF-EOS V5.x formatting specifications. All data are to be reported as "swath" data objects. The Local Granule ID is a unique identifier for locally produced granules that are then sent to the ECS for archive. The Local Granule ID is also the filename of the standard data product produced by Level 2.

The L2 standard product files are implemented using the HDF-EOS 5 file format. HDF-EOS 5 files have a default extension of ".he5". The ECS Local Granule ID (filename) for a L2 standard product is constructed using the following template:

TES-Aura_L2-<species>-<view>_r<run id>_<version id>.he5

ESDT Short Name ECS File Type Collection Summary Local Granule IDa TES-Aura_L2-H2O-Nadir_rnnnnnnnnn_ Fff_cc.he5 TL2H2ON **HDF-EOS** TES/Aura L2 H2O Nadir TL2H2OL HDF-EOS TES/Aura L2 H2O Limb TES-Aura L2-H2O-Limb rnnnnnnnn Fff cc.he5 TL2O3N HDF-EOS TES/Aura L2 O3 Nadir TES-Aura_L2-O3-Nadir_rnnnnnnnn_ Fff_cc.he5 TL2O3L HDF-EOS TES/Aura L2 O3 Limb TES-Aura L2-O3-Limb rnnnnnnnn Fff cc.he5 TL2CH4N HDF-EOS TES/Aura L2 CH4 Nadir TES-Aura_L2-CH4-Nadir_rnnnnnnnn_ Fff_cc.he5 TL2CH4L HDF-EOS TES/Aura L2 CH4 Limb TES-Aura L2-CH4-Limb rnnnnnnnn Fff cc.he5 TL2CON HDF-EOS TES/Aura L2 CO Nadir TES-Aura L2-CO-Nadir rnnnnnnnn Fff cc.he5 TL2COL HDF-EOS TES/Aura L2 CO Limb TES-Aura_L2-CO-Limb_rnnnnnnnn_ Fff_cc.he5 TL2HDON HDF-EOS TES/Aura L2 HDO Nadir TES-Aura L2-HDO-Nadir rnnnnnnnn Fff cc.he5 TL2HDOL HDF-EOS TES/Aura L2 HDO Limb TES-Aura_L2-HDO-Limb_rnnnnnnnn_ Fff_cc.he5 TES-Aura_L2-NO2-<u>Limb_rnnnnnnnn__</u> Fff_cc.he5 TL2NO2L HDF-EOS TES/Aura L2 NO2 Limb TL2HNO3L TES/Aura L2 HNO3 Limb TES-Aura_L2-HNO3-Limb_rnnnnnnnn_ Fff_cc.he5 **HDF-EOS** TL2ATMTN **HDF-EOS** TES/Aura L2Atmospheric TES-Aura L2-ATM-TEMP-Nadir rnnnnnnnn Fff cc.he5 Temperatures Nadir TES/Aura L2 Atmospheric TES-Aura L2-ATM-TEMP-Limb rnnnnnnnn Fff cc.he5 TL2ATMTL **HDF-EOS** Temperatures Limb HDF-EOS TES/Aura L2 Ancillary Data TES-Aura L2-ANCILLARY rnnnnnnnnn Fff cc.he5 TL2ANC

Table 4-2: EOS Aura TES Standard Products (Level 2)

As mentioned above, each TES L2 standard product reports information in a standardized data organization, the swath. Each swath element is bounded by (1) the number of observations in a global survey and (2) a predefined set of pressure levels representing slices through the atmosphere.

The organization of data within the swath object is based on a superset of the UARS pressure levels used to report concentrations of trace atmospheric gasses. The reporting grid is the same pressure grid used for modeling. For R9, nadir products have 66 atmospheric reporting levels and limbs products 87 atmospheric reporting levels. These levels range from 1211.53 hPa, which allows for very high surface pressure conditions, to 0.1 hPa, about 65 km. In addition, the nadir and limb products will report values directly at the surface when possible or at the observed cloud top level. Thus in the Standard Product files each nadir and limb observation can potentially contain estimates for the concentration of a particular molecule at 67 nadir and 88 limb different pressure levels within the atmosphere. However, for almost all retrieved profiles, the highest pressure levels are not observed due to a surface at lower pressure or cloud obscuration. For pressure levels corresponding to altitudes below the cloud top or surface, where measurements were not possible, a fill value will be applied.

In the standard products, the data will be organized as shown in the diagram below. The diagram shows the organization for an example limb product at 88 pressure levels (87 + 1 surface pressure). For nadir there would be 67 pressure levels (66 + 1 surface pressure). The value retrieved at the surface pressure is placed at the level below the last valid atmospheric standard pressure level. (The user can identify the value retrieved at the surface pressure because the remaining "levels" below that will have a fill value.)

a. Where rnnnnnnnn corresponds to the run id and Fff cc is the file version number (see Section 2.3.1).

88 Levels	Obs. 1	Obs. 2	Obs.	Obs. 4		Obs. 1149	Obs. 1150	Obs. 1151	Obs. 1152
88	Standard Pressure Level	Standard Pressure Level	Standard Pressure Level	Standard Pressure Level		Standard Pressure Level	Standard Pressure Level	Standard Pressure Level	Standard Pressure Level
87		"			"		"	"	"
86					44		44		٠.
85	٠.	"	"	"	"	"	"	"	"
						•			
	•	•		•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•
8	cc	cc		cc		Surface Pressure	Standard Pressure Level		
7	cc	cc	Standard Pressure Level	cc		Fill	Surface Pressure	Standard Pressure Level	
6	cc	Standard Pressure Level	Surface Pressure	Standard Pressure Level		Fill	Fill	Surface Pressure	
5	Standard Pressure Level	Surface Pressure	Fill	Surface Pressure		Fill	Fill	Fill	Standard Pressure Level
4	Surface Pressure	Fill	Fill	Fill		Fill	Fill	Fill	Surface Pressure
3	Fill	Fill	Fill	Fill		Fill	Fill	Fill	Fill
2	Fill	Fill	Fill	Fill		Fill	Fill	Fill	Fill
1	Fill	Fill	Fill	Fill		Fill	Fill	Fill	Fill

Finally, other data are included with estimates for molecular concentration. Some of these data such as precision estimates are reported at the same density as the data points, while other information defines an aspect of a target scene's characteristics in a single data value

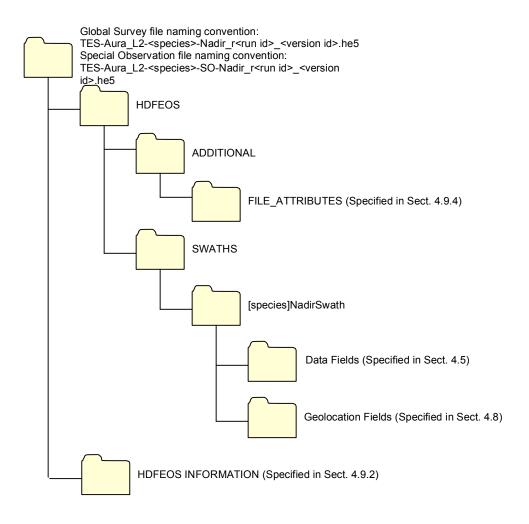
4.1.2 Special Observation Products

L2 Special Observation data products are also segregated into separate products by observation type (limb and nadir).

The L2 Special Observation files are also implemented using the HDF-EOS 5 file format. HDF-EOS 5 files have a default extension of ".he5". The filename for a L2 Special Observation product is constructed using the following template:

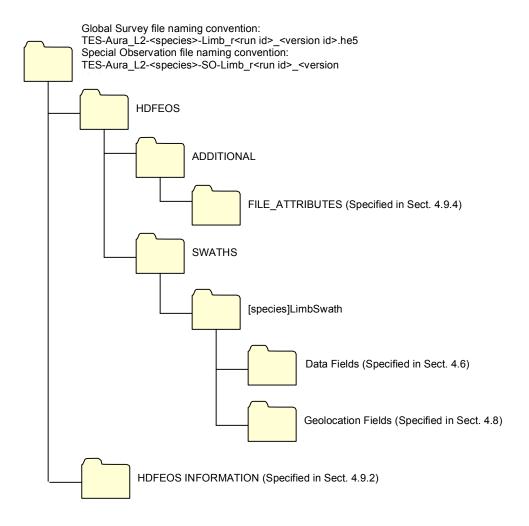
TES-Aura_L2-<species>-SO-<view>_r<run id>_<version id>.he5

ESDT Short Name ECS File Type Local Granule IDa **Collection Summary** TL2H2ONS TES-Aura L2-H2O-SO-Nadir rnnnnnnnn Fff cc.he5 **HDF-EOS** TES/Aura L2 H2O Nadir Special Observation TL2H2OLS **HDF-EOS** TES/Aura L2 H2O Limb Special TES-Aura_L2-H2O-SO-Limb_rnnnnnnnn_ Fff_cc.he5 Observation TL2O3NS HDF-EOS TES/Aura L2 O3 Nadir Special TES-Aura_L2-O3-SO-Nadir_rnnnnnnnn_ Fff_cc.he5 Observation TL2O3LS HDF-EOS TES/Aura L2 O3 Limb Special TES-Aura_L2-O3-SO-Limb_rnnnnnnnn_ Fff_cc.he5 Observation $TES-Aura_L2-CH4-SO-Nadir_rnnnnnnnn_Fff_cc.he5$ TL2CH4NS HDF-EOS TES/Aura L2 CH4 Nadir Special Observation TL2CH4LS HDF-EOS TES/Aura L2 CH4 Limb Special TES-Aura L2-CH4-SO-Limb rnnnnnnnn Fff cc.he5 Observation TL2CONS HDF-EOS TES/Aura L2 CO Nadir Special TES-Aura L2-CO-SO-Nadir rnnnnnnnn Fff cc.he5 Observation TL2COLS TES-Aura L2-CO-SO-Limb rnnnnnnnn Fff cc.he5 HDF-EOS TES/Aura L2 CO Limb Special Observation **TL2HDONS HDF-EOS** TES/Aura L2 HDO Nadir Special TES-Aura L2-HDO-SO-Nadir rnnnnnnnn Fff cc.he5 Observation TL2HDOLS **HDF-EOS** TES-Aura L2-HDO-SO-Limb rnnnnnnnn Fff cc.he5 TES/Aura L2 HDO Limb Special Observation TL2NO2S **HDF-EOS** TES/Aura L2 NO2 Limb Special TES-Aura L2-NO2-SO-Limb rnnnnnnnn Fff cc.he5 Observation TL2HNO3S TES-Aura_L2-HNO3-SO-Limb_rnnnnnnnn_ Fff_cc.he5 HDF-EOS TES/Aura L2 HNO3 Limb Special Observation TL2TNS HDF-EOS TES/Aura L2Atmospheric TES-Aura_L2-ATM-TEMP-SO-Nadir_rnnnnnnnnn_ Fff_cc.he Temperatures Nadir Special Observation TL2TLS HDF-EOS TES/Aura L2 Atmospheric TES-Aura L2-ATM-TEMP-SO-Limb rnnnnnnnn Fff cc.he Temperatures Limb Special Observation TL2ANCS HDF-EOS TES/Aura L2 Ancillary Special TES-Aura L2-ANCILLARY-SO rnnnnnnnnn Fff cc.he5 Observation Data

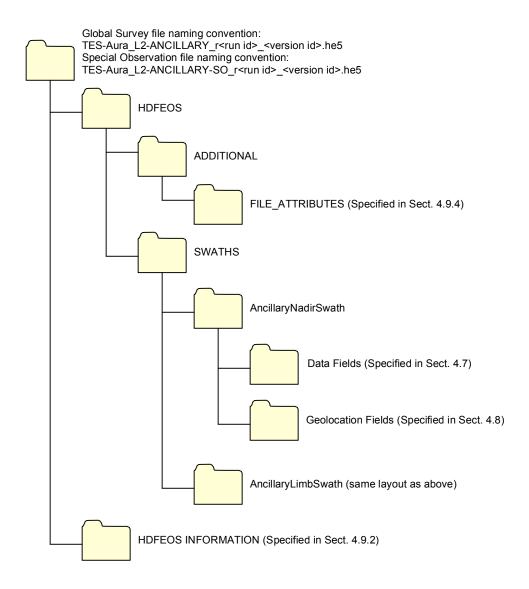

Table 4-3: EOS Aura TES Special Observation Products (Level 2)

As above for Standard Products, each TES L2 Special Observation product reports information in a standardized data organization, the swath. Each swath element is bounded by (1) the number of observations in a Special Observation run and (2) a predefined set of pressure levels representing slices through the atmosphere as described above.

4.2 Nadir File Structure


The file structure of each nadir standard or special observation product is depicted in the figure below. In addition to the swath object (described above), each nadir standard product also contains descriptive metadata. The organization and layout of metadata conforms to HDF-EOS guidelines. First, an ECS Metadata block, metadata that includes a set of mandatory data describing attributes about the standard product is found at the beginning of every standard product. TES-specific metadata follows the ECS metadata. These metadata fields are used to describe TES specific details. Some of these data will be common among all TES products, some common only to TES Level 2 products, and some specific only to Nadir L2 products.

a. Where rnnnnnnnn corresponds to the run_id and Fff_cc is the file version number (see Section 2.3.1).


4.3 Limb File Structure

Similar in structure to the Nadir data product above, the Limb or High-Resolution product consists of both metadata and a swath data object (see figure below).

4.4 Ancillary File Structure

There are a number data items common to both Nadir and Limb observations that are consistent for all species for a given global survey or Special Observation run. Rather than replicate these items repeatedly with each file, these data items have been incorporated into a single file termed the TES L2 Ancillary Data product. Thus, the Ancillary product would be required as a partner to any L2 nadir or limb product. See figure below.

4.5 Nadir Data Fields

The Nadir Data Fields consist of primary data fields, which are VMR or temperature profiles and other data dimensioned by time and pressure levels, and the associated data fields, which are only dimensioned by time.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
Missing Value Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999			Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrument names (in alphabetical order)		NATIVE_CHAR

4.5.1 Nadir Primary Data Fields

The table below shows the swath data dimensions. The pressure levels as shown in this table are the 66 pressure levels plus one surface level as described in the Overview (Section 4.1).

All nadir swath data fields are based on a unified data structure and are used to report results of retrievals of spectra received from the L1B subsystem. The VMR data for the particular species of interest is the primary data element of each swath data layer. It is accompanied by various indices of error that help in evaluating the quality of the retrieval.

Table 4-3: Primary Data Dimensions Definitions

Dimension Name	Valid Value (Description)
nLevels	Number of reported pressure levels
nTimes	Number of reported observations

Table 4-4: Nadir Primary Data Fields

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
[species]	VMR data or temperature data (dim nLevels x nTimes)	VMR or K		32	NATIVE_FLOAT
[species]Precision	Square-roots of diagonal elements of the measurement error covariance. See comment for TotalError regarding use. (dim nLevels x nTimes)	ln(VMR) or K		32	NATIVE_FLOAT
TotalError	Square-roots of diagonal elements the output total error covariance (includes smoothing error, systematic error, and measurement error). For T _{ATM} , these values are the error bars. For atmospheric species, the positive error bar is: error+ = exp(ln(VMR) + error) - VMR. The negative error bar is: error- = VMR - exp(ln(VMR) - error) (dim nLevels x nTimes)	K		32	NATIVE_FLOAT

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
VerticalResolution	Estimate of vertical resolution using the FWHM of averaging kernels (dim nLevels x nTimes)	km		32	NATIVE_FLOAT
ConstraintVector	Constraint vector used in the retrieval	ln(VMR) or K		32	NATIVE_FLOAT
AveragingKemel	(dim nLevels x nTimes) Retrieval sensitivity. For temperature, this is the sensitivity of the retrieved temperature to the true temperature. For atmospheric species this is the sensitivity of retrieved ln(VMR) to the true ln(VMR). (dim nLevels x nLevels x nTimes)	N/A		32	NATIVE_FLOAT
TotalErrorCovariance	Sum of measurement, systematic, and smoothing error covariances. For T _{ATM} , this is the covariance of the error of temperature. For atmospheric species, this is the covariance of the error of ln(VMR). (dim nLevels x nLevels x nTimes)	ln(VMR)^2 or K^2		32	NATIVE_FLOAT
MeasurementErrorCovariance	Propagated measured radiance noise. See comment for TotalErrorCovariance. (dim nLevels x nLevels x nTimes)	ln(VMR)^2 or K^2		32	NATIVE_FLOAT
ObservationErrorCovariance	Measurement + systematic + cross-state errors. The utility of the observation error is for comparisons with other measurements and for assimilation. The smoothing error is accounted for when one applies the averaging kernel, so the observation error accounts for everything else. See comment for TotalErrorCovariance. (dim nLevels x nLevels x nTimes)	ln(VMR)^2 or K^2		32	NATIVE_FLOAT
Initial	Initial VMR data or temperature data (for retrieved temperature) used in the retrieval (dim nLevels x nTimes)	VMR or K		32	NATIVE_FLOAT
AveragingKernelDiagonal	Diagonal of the averaging kernel, which shows retrieval sensitivity. For temperature, this is the sensitivity of the retrieved temperature to the true temperature. For atmospheric species this is the sensitivity of retrieved ln(VMR) to the true ln(VMR). (dim nLevels x nTimes)	N/A		32	NATIVE_FLOAT
AirDensity	Air density for each pressure level (dim nLevels x nTimes)	Molec/cm^3	0-1e+26	32	NATIVE_FLOAT
Pressure	List of the 88 Pressure Levels used (dim nLevels x nTimes)	hPa	0.001-1300.0	32	NATIVE_FLOAT
Altitude	Derived altitude for each pressure level (dim nLevels x nTimes)	meters	0-70000	32	NATIVE_FLOAT

^{*} Where [species] equals H2O, O3, CH4, CO, HDO, or Temperature

Ideally, species and associated precision and quality measures will be populated for all Target Scenes in the global survey. However, there will be times where completing retrievals will not be possible. The causes will be varied and might be due to bad spectra (based on evaluation by L1B), excessive cloud cover, or the retrieval was not performed for scheduling or other administrative reasons. Regardless of the cause for missing data, certain swath data fields will be set to a fill value according HDF-EOS Aura File Format Guidelines. Additionally, cloud cover may prevent retrieval down to the Earth's surface, resulting in partial retrievals. When such cases occur, pressure layers will contain fill values when no data exists.

4.5.2 Nadir Associated Data Fields

The table below provides the associated data dimensions. The data items shown in the following tables are also included in the Swath Data as Associated Data:

Table 4-5: Associated Data Field Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations
nFreq	25 frequencies (values listed in TES-L2-Common metadata)

Table 4-6: Nadir Associated Data Fields

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
Scan_Averaged_Count	Number of scans averaged into a single target scene. (dim nTimes)	N/A	1-40 1 = no averaging	8	NATIVE_INT8
SpeciesRetrievalQuality	Species Retrieval Quality flag. True means retrieval passed quality check and reported errors are accurate. (dim nTimes)	n/a	0 = poor quality 1 = passed quality chec	8	NATIVE_INT8
CloudTopPressure	Pressure of inferred cloud top (species independent) (dim nTimes)	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudTopPressureError	Error on Cloud Top Pressure (dim nTimes)	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepth	Vertical optical depth for the retrieved non-scattering cloud calculated at 25 frequencies listed in TES-L2-Common-Metadata	n/a	0.0500.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepthErro r	(dim nTimes x nFreq) Error for Cloud Effective Optical Depth calculated at 25 frequencies listed in TES-L2-Common- Metadata (dim nTimes x nFreq)	n/a	0.0500.0	32	NATIVE_FLOAT
SurfaceTemperature	Retrieved surface temperature from the atmospheric termperature retrieval step (dim nTimes)	K	150.0 - 350	32	NATIVE_FLOAT
SurfaceTempError	Error in retrieved surface temperature (dim nTimes)	K	0.0 – 20.0	32	NATIVE_FLOAT
SurfaceTempInitial	Initial surface temperature used for the retrieval (dim nTimes)	K	150.0 - 350	32	NATIVE_FLOAT

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SurfaceTempDegreesOfFreedom	Degrees of freedom for surface temperature (dim nTimes)	N/A	0.0 - 2.0	32	NATIVE_FLOAT
SurfaceTempObservationError	Measurement + systematic + cross- state errors. The utility of the observation error is for comparisons with other measurements and for assimilation. The smoothing error is accounted for when one applies the averaging kernel, so the observation error accounts for everything else. (dim nTimes)		0-50	32	NATIVE_FLOAT
SurfaceTempConstraint	Surface temperature value used to constrain the retrieval (species independent) (dim nTimes)	K	150.0 - 350	32	NATIVE_FLOAT
SurfaceTempPrecision	Square-root of diagonal element of the measurement error covariance (dim nTimes)	K	150.0 - 350	32	NATIVE_FLOAT
TotalColumnDensity	Total column amount computed from the retrieved profile. For the Atmospheric Temperature Product this will be a fill value. (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
TotalColumnDensityError	Error in total column amount computed from total error covariance For the Atmospheric Temperature Product this will be a fill value. (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
TotalColumnDensityInitial	Total column amount computed from the initial profile. For the Atmospheric Temperature Product this will be a fill value. (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
SpeciesRetrievalConverged	Indicates whether the non-linear least squares solver converged to a minimum. True=1, False=0 (dim nTimes)	N/A	0 or 1 (Boolean)	8	NATIVE_INT8
DeviationVsRetrievalCovariance	Deviation vs. Retrieval Covariance (dim nTimes)		-10000.0 - 10000.0	32	NATIVE_FLOAT
RadianceResidualMean	Mean of the model and data radiance difference (per species). (dim nTimes)		-1000.0 - 1000.0	32	NATIVE_FLOAT
RadianceResidualRMS	RMS of model and data difference (dim nTimes)		0.0 - 100.0	32	NATIVE_FLOAT
RadianceResidualMax	Maximum absolute difference between model and data (dim nTimes)		-10000.0 - 10000.0	32	NATIVE_FLOAT
NumberIterPerformed	Actual number of iterations performed (dim nTimes)	Integer	Small number, typically < 8 and could be 0	8	NATIVE_INT8
MaxNumIterations	Maximum number of iterations allowed for convergence (dim nTimes)	N/A	<100	8	NATIVE_INT8

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
DegreesOfFreedomForSignal	Number of independent parameters for the profile (trace of the averaging kernel) (dim nTimes)	N/A	0.0—1000.0	32	NATIVE_FLOAT
InformationContent	Relative decrease in error volume with respect to a priori (dim nTimes)	N/A	-100.0— 1000.0	32	NATIVE_FLOAT
CloudVariability_QA	Quality value calculated from cloud variability (dim nTimes)	N/A	0- 100	32	NATIVE_FLOAT
KDotDL_QA	Quality value calculating the signal left in the residual. This is the maximum of the dot product of the Jacobian (K) and the Radiance (L) divided by sqrt(K dot K) * sqrt(L dot L) (dim nTimes)	N/A	0 - 100	32	NATIVE_FLOAT
LDotDL_QA	Quality value calculating the signal left in the residual. This is the dot product of the radiance (L) with the residual (dL) divided by sqrt(L dot L) * sqrt(dL dot dL) (dim nTimes)	N/A	-100 - 100	32	NATIVE_FLOAT
Calibration_QA	Quality value of calculated from the calibration factors (dim nTimes)	N/A	-1 - 1	32	NATIVE_FLOAT
AverageCloudEffOpticalDepth	Quality value: the cloud mean optic depth from 975 – 1200 cm-1 (dim nTimes)	N/A	0 - 10000	32	NATIVE_FLOAT
SurfaceEmissMean_QA	Quality value comparing the retrieve emissivity to the initial emissivity. Fill for ocean and limb scenes (dim nTimes)	N/A	-2 - 2	32	NATIVE_FLOAT
SurfaceTempVsApriori_QA	Quality value comparing the surface temperature to a priori value (dim nTimes)	K	-100 - 100	32	NATIVE_FLOAT
SurfaceTempVsAtmTemp_QA	Quality value comparing the surface temperature to the lowest atmospher pressure. (dim nTimes)	K	-100 - 100	32	NATIVE_FLOAT

4.6 Limb Data Fields

Like the Nadir Data Fields, the Limb Data Fields consist of the primary data fields, which are VMR or temperature profiles and other data dimensioned by time and pressure levels, and the associated data fields, which are only dimensioned by time.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999		Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrument names (in alphabetical order)		NATIVE_CHAR

4.6.1 Limb Primary Data Fields

All swath data fields are based on a unified data structure and are used to report results of retrievals of spectra received from the L1B subsystem. The VMR data for the particular species of interest is the primary data element of each swath data layer. It is accompanied by various indices of error that help in evaluating the quality of the retrieval.

Ideally, species and associated precision and quality measures will be populated for all Target Scenes in the global survey. However, there will be times where completing retrievals will not be possible. The causes will be varied and might be due to bad spectra (based on evaluation by L1B), excessive cloud cover, or the retrieval was not performed for scheduling or other administrative reasons. Regardless of the cause for missing data, certain swath data fields will be set to a fill value according to the HDF-EOS Aura File Format Guidelines. Additionally, cloud cover may prevent retrieval down to the Earth's surface, resulting in partial retrievals. When such cases occur, pressure layers will contain fill values when no data exists.

Table 4-7: Primary Data Fields Dimensions Definitions

Dimension Name	Valid Value (Description)
nLevels	Number of reported pressure levels
nTimes	Number of reported observations

Table 4-8: Limb Primary Data Fields

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
[species]	VMR data or temperature data (for retrieved temperature) (dim nLevels x nTimes)	VMR or K		32	NATIVE_FLOAT
[species]Precision	Square-roots of diagonal elements of the measurement error covariance. See comment for TotalError regarding use. (dim nLevels x nTimes)	ln(VMR) or K		32	NATIVE_FLOAT

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
TotalError	Square-roots of diagonal elements of the output total error covariance (includes smoothing error, systemat error, and measurement error). For T _{ATM} , these values are the error bars For atmospheric species, the positive error bar is: error+ = exp(ln(VMR) error) - VMR. The negative error bar is: error- = VMR - exp(ln(VMR) - error) (dim nLevels x nTimes)	K		32	NATIVE_FLOAT
VerticalResolution	Estimate of vertical resolution using the FWHM of averaging kernels (dim nLevels x nTimes)	km		32	NATIVE_FLOAT
ConstraintVector	Constraint vector used in the retrieval (dim nLevels x nTimes)	ln(VMR) or K		32	NATIVE_FLOAT
AveragingKernel	Retrieval sensitivity. For temperature, this is the sensitivity of the retrieved temperature to the true temperature. For atmospheric species this is the sensitivity of retrieved ln(VMR) to the true ln(VMR). (dim nLevels x nLevels x nTimes)	N/A		32	NATIVE_FLOAT
TotalErrorCovariance	Sum of measurement, systematic, and smoothing error covariances. For T _{ATM} , this is the covariance of the error of temperature. For atmospheric species, this is the covariance of the error of ln(VMR). (dim nLevels x nLevels x nTimes)	ln(VMR)^2 or K^2		32	NATIVE_FLOAT
MeasurementErrorCovariance	Propagated measured radiance noise. See comment for TotalErrorCovariance. (dim nLevels x nLevels x nTimes)	ln(VMR)^2 or K^2		32	NATIVE_FLOAT
ObservationErrorCovariance	Measurement + systematic + cross- state errors. The utility of the observation error is for comparisons with other measurements and for assimilation. The smoothing error is accounted for when one applies the averaging kernel, so the observation error accounts for everything else. See comment for TotalErrorCovariance. (dim nLevels x nLevels x nTimes)	ln(VMR)^2 or K^2		32	NATIVE_FLOAT
Initial	Initial VMR data or temperature data (for retrieved temperature) used in the retrieval (dim nLevels x nTimes)	VMR or K		32	NATIVE_FLOAT
AveragingKernelDiagonal	Diagonal of the averaging kernel, which shows retrieval sensitivity. For temperature, this is the sensitivity of the retrieved temperature to the true temperature. For atmospheric species this is the sensitivity of retrieved ln(VMR) to the true ln(VMR). (dim nLevels x nTimes)	N/A		32	NATIVE_FLOAT
AirDensity	Air density for each pressure level (dim nLevels x nTimes)	Molecules per cm3	0-1e+26	32	NATIVE_FLOAT

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
Pressure	List of the 88 Pressure Levels used	hPa	0.001-1300.0	32	NATIVE_FLOAT
	(dim nLevels x nTimes)				_
Altitude	Derived altitude for each pressure	meters	0-70000	32	NATIVE_FLOAT
	level				
	(dim nLevels x nTimes)				

^{*} Where [species] equals H2O, O3, CH4, CO, HDO, NO2, HNO3, or Temperature

4.6.2 Limb Associated Data Fields

The table below provides the associated data dimensions. The data items shown in the following tables are also included in the Swath Data as Associated Data:

Table 4-9: Associated Data Field Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations
nFreq	25 frequencies (values listed in TES-L2-Common metadata

Table 4-10: Limb Associated Data Fields

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpeciesRetrievalQuality	Species Retrieval Quality flag. True means retrieval passed quality check and reported errors are accurate. (dim nTimes)	n/a	0 = poor quality 1 = passed quality chec	8	NATIVE_INT8
CloudTopPressure	Pressure of inferred cloud top (specie independent) (dim nTimes) THIS DATAFIELD WILL BE FIL FOR R9 PRODUCTS.	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudTopPressureError	Error on Cloud Top Pressure (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepth	Vertical optical depth for the retrieved non-scattering cloud calculated at 25 frequencies listed in TES-L2-Common-Metadata (dim nTimes x nFreq) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	n/a	0.0500.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepthErr or	Error for Cloud Effective Optical Depth calculated at 25 frequencies listed in TES-L2-Common- Metadata (dim nTimes x nFreq) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	n/a	0.0500.0	32	NATIVE_FLOAT

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
TotalColumnDensity	Total column amount computed from the retrieved profile. For the Atmospheric Temperature Product this will be a fill value.	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
	(dim nTimes)				
TotalColumnDensityError	Error in total column amount computed from total error covariance For the Atmospheric Temperature Product this will be a fill value. (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
TotalColumnDensityInitial	Total column amount computed from the initial profile. For the Atmospheric Temperature Product this will be a fill value. (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
SpeciesRetrievalConverged	Indicates whether the non-linear least squares solver converged to a minimum. True=1, False=0 (dim nTimes)		0 or 1 (Boolean)	8	NATIVE_INT8
DeviationVsRetrievalCovarian ce	Deviation vs. Retrieval Covariance (dim nTimes)		-10000.0 - 10000.0	32	NATIVE_FLOAT
RadianceResidualMean	Mean of the model and data radiance difference (per species). (dim nTimes)		-1000.0 - 1000.0	32	NATIVE_FLOAT
RadianceResidualRMS	RMS of model and data difference (dim nTimes)		0.0 – 100.0	32	NATIVE_FLOAT
RadianceResidualMax	Maximum absolute difference between model and data (dim nTimes)		-10000.0 - 10000.0	32	NATIVE_FLOAT
NumberIterPerformed	Actual number of iterations performe (dim nTimes)	Integer	Small numb typically < 8 and could be		NATIVE_INT8
MaxNumIterations	Maximum number of iterations allow for convergence (dim nTimes)		< 100	8	NATIVE_INT8
DegreesOfFreedomForSignal	Number of independent parameters for the profile (trace of the averaging kernel) (dim nTimes)	N/A	0.0—1000.0	32	NATIVE_FLOAT
InformationContent	Relative decrease in error volume with respect to a priori (dim nTimes)	N/A	-100.0— 1000.0	32	NATIVE_FLOAT
CloudVariability_QA	Quality value calculated from cloud variability (dim nTimes) THIS DATAFIELD WILL BE FIL FOR R9 PRODUCTS.	N/A	0- 100	32	NATIVE_FLOAT
KDotDL_QA	Quality value calculating the signal left in the residual. This is the maximum of the dot product of the Jacobian (K) and the Radiance (L) divided by sqrt(K dot K) * sqrt(L dot L) (dim nTimes)	N/A	0 - 100	32	NATIVE_FLOAT

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
LDotDL_QA	Quality value calculating the signal left in the residual. This is the dot product of the radiance (L) with the residual (dL) divided by sqrt(L dot L) * sqrt(dL dot dL)	N/A	-100 - 100	32	NATIVE_FLOAT
	(dim nTimes)				
Calibration_QA	Quality value of calculated from the calibration factors (dim nTimes)	N/A	-1 - 1	32	NATIVE_FLOAT
AverageCloudEffOpticalDepth	Quality value: the cloud mean optica depth from 975 – 1200 cm-1 (dim nTimes)	N/A	0 - 10000	32	NATIVE_FLOAT
	THIS DATAFIELD WILL BE FIL FOR R9 PRODUCTS.				

4.7 Ancillary Data Fields

The Ancillary ESDT contains the Associated Data Fields common to all species that were not included in the individual species files. One Ancillary ESDT will be created for each global survey.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	Type	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999			Same type as Data Field
Title	For labeling a plot or axis.		char	NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		char	NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrumenames (in alphabetical order)		char	NATIVE_CHAR

Each Ancillary ESDT will consist of two Ancillary Data swaths, Nadir and Limb. Each Ancillary Data swath will contain the following data items:

Table 4-11: Ancillary Data Dimensions Definitions

Di M	Valid Value (Description)	
Dimension Name		

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations
nFreq	121 frequencies (listed in TES-L2-Common metadata)
nLevels	Number of reported pressure levels
nPixels	64 total number of pixels

Table 4-12: Ancillary Nadir Data Fields

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpacecraftLatitude	Geodetic latitude referenced to WGS84 ellipsoid	degrees	± 90.0	32	NATIVE_FLOAT
SpacecraftLongitude	(dim nTimes) Longitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 180.0	32	NATIVE_FLOAT
SpacecraftAltitude	Height referenced to WGS84 ellipsoid (dim nTimes)	meters		32	NATIVE_FLOAT
OrbitAscendingFlag	True=1, False=0 (dim nTimes)		0 or 1 (Boolean	8	NATIVE_INT8
SolarAzimuthAngle	Solar azimuth angle relative to the local north at the geolocation. (From geolocation table) (dim nTimes)	degrees		32	NATIVE_FLOAT
PixelsUsedFlag	True=1, False=0 (dim nTimes x nPixels)		64 chars, one for each pixel	520 total	NATIVE_CHAR
OzoneTroposphericColumn	Column amount from the surface to TropopausePressue computed from the retrieved profile. (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	Molec/cm^2	0 – 10^28	32	NATIVE_FLOAT
OzoneTroposphericColumnError	Error in the column amount from the surface to TropopausePressue computed from the total error covariance. (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	Molec/cm^2	0 - 10^28	32	NATIVE_FLOAT
OzoneTroposphericColumnInitial	Initial column amount from the surface to TropopausePressue computed from the initial profile. (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	Molec/cm^2	0 – 10^28	32	NATIVE_FLOAT
TropopausePressure	Pressure between the troposphere and stratosphere used to calculate the tropospheric column	hPa	10 - 1300	32	NATIVE_FLOAT
SurfaceEmissivity	Retrieved surface emissivity for land nadir targets. Fill values for scenes where emissivity not retrieved. (dim nFreq x nTimes)		0.0 - 2.0	32	NATIVE_FLOAT
SurfaceEmissErrors	Errors in retrieved surface emissivity for land nadir targets. Fill values for scenes where emissivity not retrieved. (dim nFreq x nTimes)			32	NATIVE_FLOAT

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SurfaceEmissConstraint	A priori surface emissivity for land nadir targets. Fill values for scenes where emissivity not retrieved.		0.0 - 2.0	32	NATIVE_FLOAT
	(dim nFreq x nTimes)			1	
SurfaceEmissInitial	Initial surface emissivity land nadir targets.		0.0 - 2.0	32	NATIVE_FLOAT
T_H2OCovariance	(dim nFreq x nTimes) Error covariance terms for joint temperature and water retrieval (dim nLevels x nLevels x nTimes)	K*ln(VMR)	-4.0 – 4.0	32	NATIVE_FLOAT
T_H2OAveragingKernel	Averaging kernel terms for joint temperature and water retrieval (influence of T on H2O) (dim nLevels x nLevels x nTimes)	N/A	-10.0 – 10.0	32	NATIVE_FLOAT
H2O_TAveragingKernel	Averaging kernel terms for joint temperature and water retrieval (influence of H2O on T) (dim nLevels x nLevels x nTimes)	N/A	-10.0 – 10.0	32	NATIVE_FLOAT
Filter_Position_1A	Filter position for Focal Plane 1A (dim nTimes)	N/A	1-5	8	NATIVE_INT8
Filter_Position_1B	Filter position for Focal Plane 1B (dim nTimes)	N/A	1-2	8	NATIVE_INT8
Filter_Position_2A	Filter position for Focal Plane 2A (dim nTimes)	N/A	1-4	8	NATIVE_INT8
Filter_Position_2B	Filter position for Focal Plane 2B (dim nTimes)	N/A	1	8	NATIVE_INT8

Table 4-13: Ancillary Limb Data Fields

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpacecraftLatitude	Geodetic latitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 90.0	32	NATIVE_FLOAT
SpacecraftLongitude	Longitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 180.0	32	NATIVE_FLOAT
SpacecraftAltitude	Height referenced to WGS84 ellipsoid (dim nTimes)	meters		32	NATIVE_FLOAT
OrbitAscendingFlag	True=1, False=0 (dim nTimes)		0 or 1 (Boolean	8	NATIVE_INT8
SolarAzimuthAngle	Solar azimuth angle relative to local north at the spacecraft. (dim nTimes)	degrees		32	NATIVE_FLOAT
PixelsUsedFlag	True=1, False=0 (dim nTimes x nPixels)		64 chars, one for each pixel	520 total	NATIVE_CHAR
TropopausePressure	Pressure between the troposphere and stratosphere used to calculate the tropospher column	hPa	10 - 1300	32	NATIVE_FLOAT
RetrievedPointingAngle	Retrieved value of the boresight nadir angles using TES limb spectral radiances. (Limb only) (dim nTimes)	degrees		32	NATIVE_FLOAT
RetrievedPointingAngleError	Error of retrieved value of the boresight nad angles using TES limb spectral radiances. (Limb only) (dim nTimes)	degrees		32	NATIVE_FLOAT

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
T_H2OCovariance	Error covariance terms for joint temperature and water retrieval (dim nLevels x nLevels x nTimes)	K*ln(VMR)	-4.0 – 4.0	32	NATIVE_FLOAT
T_H2OAveragingKernel	Averaging kernel terms for joint temperature and water retrieval (influence of T on H2O) (dim nLevels x nLevels x nTimes)	N/A	-10.0 – 10.0	32	NATIVE_FLOAT
H2O_TAveragingKernel	Averaging kernel terms for joint temperature and water retrieval (influence of H2O on T) (dim nLevels x nLevels x nTimes)	N/A	-10.0 – 10.0	32	NATIVE_FLOAT
Filter_Position_1A	Filter position for Focal Plane 1A (dim nTimes)	N/A	1-5	8	NATIVE_INT8
Filter_Position_1B	Filter position for Focal Plane 1B (dim nTimes)	N/A	1-2	8	NATIVE_INT8
Filter_Position_2A	Filter position for Focal Plane 2A (dim nTimes)	N/A	1-4	8	NATIVE_INT8
Filter_Position_2B	Filter position for Focal Plane 2B (dim nTimes)	N/A	1	8	NATIVE_INT8

4.8 Geolocation Fields

The Geolocation Data is used to provide generic geolocation and spacecraft pointing information. This information is included with each species specific ESDT and copied identically into the Ancillary ESDT.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999		Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrument names (in alphabetical order)		NATIVE_CHAR

Each Nadir-viewing species specific ESDT will have one swath containing the Nadir geolocation items below. Each Limb-viewing species specific ESDT will have three swaths containing the Limb 1, Limb 2, and Limb 3 geolocation items below.

Each Ancillary ESDT will consist of four Ancillary Data swaths, Nadir, Limb 1, Limb 2, and Limb 3. Each Ancillary Data swath will contain the following geolocation data items:

Table 4-14: Geolocation Dimensions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations
nLength	27 character length of UTCTime

Table 4-15: Nadir Geolocation Fields

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
Sequence	Sequence number within a run (dim nTimes)	n/a		16	NATIVE_INT16
Scan	Scan number within a sequence, or if averaging was performed, first scan of an averaged set.	n/a		16	NATIVE_INT16
Time	(dim nTimes) Time (TAI93) of ZPD (Zero Path Difference) (dim nTimes)	sec		64	NATIVE_DOUBLE
UTCTime	UTC time of ZPD (Zero Path Difference) 27 character string. (dim nTimes x nLength)	sec		216 total	NATIVE_CHAR
DayNightFlag	Flag for day or night (dim nTimes)	N/A	0 = night 1 = day	8	NATIVE_INT8
Latitude	Geodetic Latitude (dim nTimes)	Decimal degrees	± 90.0	32	NATIVE_FLOAT
Longitude	Geodetic Longitude (dim nTimes)	Decimal degrees	± 180.0	32	NATIVE_FLOAT
SurfaceElevStandardDeviation	From DEM, standard deviation of average elevation over footprint (dim nTimes)	meters		32	NATIVE_FLOAT

G C T F	E DEM LE LIVI A C.	Б	1 1	0	NAMED IN THE
SurfaceTypeFootprint	From DEM, 1=Fresh Water, 2=Salt Water, 3=Land, 4=Mixed (not 100% of FW, SW, or Land). If averaging was performed, refers to first scan of an averaged set. (dim nTimes)	Enumer- ated	14	8	NATIVE_INT8
DominantSurfaceType	From the USGS Global Land Cover Characteristics Data Base described at: http://edcsns17.cr.usgs.gov/glcc/glob doc2 0.html If averaging was performed, refers to first scan of an averaged set. 1 = Urban and Built-Up Land 2 = Dryland Cropland and Pasture 3 = Irrigated Cropland and Pasture 4 = Mixed Dryland/Irrigated Cropland and Pasture 5 = Cropland/Grassland Mosaic 6 = Cropland/Woodland Mosaic 7 = Grassland 8 = Shrubland 9 = Mixed Shrubland/Grassland 10 = Savanna 11 = Deciduous Broadleaf Forest 12 = Deciduous Needleleaf Forest 13 = Evergreen Broadleaf Forest 14 = Evergreen Needleleaf Forest 15 = Mixed Forest 16 = Water Bodies 17 = Herbaceous Wetland 18 = Wooded Wetland 19 = Barren or Sparsely Vegetated 20 = Herbaceous Tundra 21 = Wooded Tundra 22 = Mixed Tundra 23 = Bare Ground Tundra 24 = Snow or Ice 99 = Interrupted Areas (Goodes Homolosine Projection) 100 = Alluvial Sand (dim nTimes) THIS DATAFIELD WILL BE FILL FOR R9 PRODUCTS.	Enumera ted	1-24, 99, 100	8	NATIVE_INT8
BoresightNadirAngle	TES boresight (LOS) nadir angle relative to the local nadir at SC (dim nTimes)	Decimal degrees	090	64	NATIVE_DOUBLE
BoresightNadirAngleUnc	Uncertainty in TES boresight nadir angle (dim nTimes)	Decimal degrees	±90	64	NATIVE_DOUBLE
BoresightAzimuth	TES boresight (LOS) azimuth angle relative to the local north at SC (dim nTimes)	Decimal degrees	0360	64	NATIVE_DOUBLE
SolarZenithAngle	Solar zenith relative to the local zenith at the spacecraft (dim nTimes)	degrees	0180	32	NATIVE_FLOAT
LocalSolarTime	Local solar time at target geolocation. Computed from target longitude and UTC. (dim nTimes)	hours		32	NATIVE_FLOAT
Tgt_SpacecraftZenith	TES boresight (LOS) zenith angle relative to the local zenith at the target geolocation. (dim nTimes)	degrees	±90	32	NATIVE_FLOAT

Tgt_SpacecraftAzimuth	TES boresight (LOS) azimuth angle relative to the local north at the target geolocation. (dim nTimes)	degrees (ea of north)	±90	32	NATIVE_FLOAT
Latitude_Footprint_1	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_2	footprint. Nadir footprint determined by field of view of pixels. Limb	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_3	footprint is ±60 km track, ±12 km crosstrack from surface expression of boresight tangent point.	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_4	Latitude_Footprint_1=LowerLeft Latitude_Footprint_2=LowerRight Latitude_Footprint_3=UpperRight Latitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±90	64	NATIVE_DOUBLE
Longitude_Footprint_1	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_2	footprint. Nadir footprint determined by field of view of pixels. Limb	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_3	footprint is ±60 km track, ±12 km crosstrack from surface expression of boresight tangent point	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_4	Longitude_Footprint_1=LowerLeft Longitude_Footprint_2=LowerRight Longitude_Footprint_3=UpperRight Longitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±180	64	NATIVE_DOUBLE

Table 4-16: Limb Geolocation Fields

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
Sequence	Sequence number within a run (dim nTimes)	n/a		16	NATIVE_INT16
Scan	Scan number within a sequence, or if averaging was performed, first scan of an averaged set. (dim nTimes)	n/a		16	NATIVE_INT16
Time	Time (TAI93) of ZPD (Zero Path Difference) (dim nTimes)	sec		64	NATIVE_DOUBLE
UTCTime	UTC time of ZPD (Zero Path Difference) 27 character string. (dim nTimes x nLength)	sec		216 total	NATIVE_CHAR
DayNightFlag	Flag for day or night (dim nTimes)	N/A	0 = night 1 = day	8	NATIVE_INT8
Latitude	Geodetic Latitude (dim nTimes)	degrees	± 90.0	32	NATIVE_FLOAT
Longitude	Geodetic Longitude (dim nTimes)	degrees	± 180.0	32	NATIVE_FLOAT
SurfaceElevStandardDeviation				32	NATIVE_FLOAT

SurfaceTypeFootprint	From DEM, 1=Fresh Water, 2=Salt Water, 3=Land, 4=Mixed (not 100% of FW, SW, or Land). If averaging was performed, refers to first scan of an averaged set. (dim nTimes)	Enumer- ated	14	8	NATIVE_INT8
BoresightNadirAngle	TES boresight (LOS) nadir angle relative to local nadir at SC (dim nTimes)	Decimal degrees	0180	64	NATIVE_DOUBLE
BoresightNadirAngleUnc	Uncertainty in TES boresight nadir angle (dim nTimes)	Decimal degrees	±90	64	NATIVE_DOUBLE
BoresightTangentHeight	Geodetic elevation of instrument boresight at the tangent point (around 16 km) (dim nTimes)	meters		32	NATIVE_FLOAT
BoresightTangentHeightUnc	TES Boresight Tangent Height uncertainty (dim nTimes)	meters		32	NATIVE_FLOAT
BoresightAzimuth	TES boresight (LOS) azimuth angle relative to local north at SC (dim nTimes)	Decimal degrees	0360	64	NATIVE_DOUBLE
SolarZenithAngle	Solar zenith relative to the local zenith at the spacecraft (dim nTimes)	degrees		32	NATIVE_FLOAT
LocalSolarTime	Local solar time at target geolocation. Computed from target longitude and UTC. (dim nTimes)	hours		32	NATIVE_FLOAT
Tgt_SpacecraftZenith	TES boresight (LOS) zenith angle relative to the local zenith at the target geolocation. (dim nTimes)	degrees	±90	32	NATIVE_FLOAT
Tgt_SpacecraftAzimuth	TES boresight (LOS) azimuth angle relative to the local north at the target geolocation. (dim nTimes)	degrees (ea of north)	±90	32	NATIVE_FLOAT
Latitude_Footprint_1	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_2	footprint. Nadir footprint determined by field of view of pixels. Limb	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_3	footprint is ±60 km track, ±12 km crosstrack from surface expression of boresight tangent point.	Decimal degrees	±90	64	NATIVE_DOUBLE
Latitude_Footprint_4	Latitude_Footprint_1=LowerLeft Latitude_Footprint_2=LowerRight Latitude_Footprint_3=UpperRight Latitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±90	64	NATIVE_DOUBLE
Longitude_Footprint_1	Geo-location in geodetic co- ordinates of the four corners of the	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_2	footprint. Nadir footprint determined by field of view of pixels. Limb	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_3	footprint is ±60 km track, ±12 km crosstrack from surface expression	Decimal degrees	±180	64	NATIVE_DOUBLE
Longitude_Footprint_4	of boresight tangent point Longitude_Footprint_1=LowerLeft Longitude_Footprint_2=LowerRight Longitude_Footprint_3=UpperRight Longitude_Footprint_4=UpperLeft (dim nTimes)	Decimal degrees	±180	64	NATIVE_DOUBLE

4.9 L2 ECS and TES-specific Metadata

4.9.1 Introduction

As with all ESDTs, TES ESDTs contain metadata that describes specific attributes about the data or the quality of data contained in the ESDT. Some of the basic metadata items are required by EOSDIS. These data items commonly include basic identification information and other generic information about the particular ESDT. These data items are referred to as ECS Inventory Metadata. In addition to ECS Inventory Metadata, additional TES ESDTs contain additional metadata more specific to the TES program. The TES-specific metadata has been subdivided into four subcategories based on the uniqueness of its origin and identification:

> 1. Production History Production History Metadata TES-Common Metadata common to all TES ESDTs 3. TES-L2-Common Metadata common to all Level 2 ESDTs 4. TES-L2-observation specific Metadata unique to a particular ESDT subtype.

TES common metadata are fairly generic to the entire family of TES ESDTs or to TES L2 products. TES-L2observation specific, as described by name, are unique to a particular family of L2 ESDTs.

4.9.2 ECS Inventory Metadata

The table below shows the ECS Inventory Metadata. The ECS Inventory Metadata is implemented in the HDF file as text block named coremetadata within a group named HDFEOS INFORMATION.

Data Layer Name	Data Description	TES Valids	Type ²	Source
AssociatedInstrumentShortName	Instrument short name supplied by TES project.	TES	VA20	MCF
AssociatedPlatformShortName	Platform short name supplied by EOS project.	Aura	VA20	MCF
AssociatedSensorShortName	Sensor short name supplied by TES project.	FTS	VA20	MCF
OperationMode	Mode of operation of the instrument.	Calibration Routine	VA20	MCF
ShortName	This name will identify the ESDT short name associated with the collection or granule.	(set in MCF)	A8	MCF
VersionID	Version identifier of the ESDT data collection.	(set in MCF)	SI	MCF
ProductionDateTime	The date and time a specific granule was produced a PGE.	YYYY-MM-DDT HH:MM:SS.SSSZ	DT	TK
SizeMBECSDataGranule	The size attribute will indicate the volume of data contained in the granule.		F10	DSS
LocalGranuleID			VA80	PGE
LocalVersionID	Local version identifier for PGE defined granule versions. Takes the form "executable name: Clearcase label"		VA60	PGE

Table 4-17: ECS Inventory Metadata

² Data types and Sources given are specified in document [3] on page 1-1.

Data Layer Name	Data Description	TES Valids	Type ²	Source
InputPointer	Description of location of Production History information.	"Production History block at: /HDFEOS/ADDITI ONAL/FILE_ATTR IBUTES/PRODUC TION HISTORY"	VA255	PGE
ParameterName	Scope of quality flags. For TES, refers to entire granule.	Granule	A40	PGE
ScienceQualityFlag	The granule level flag applying generally to the granule and specifically to parameters at the granule level.	Passed Failed Being Investigated Not Investigated Inferred Passed Inferred Failed Suspect	VA25	DP
ScienceQualityFlagExplanation	A text explanation of the criteria used to set the ScienceQualityFlag including thresholds or other criteria.	(Free text)	VA255	DP
RangeBeginningDate	The year, month, and day when the temporal coverage period being described began.	YYYY-MM-DD	DT	PGE
RangeBeginningTime	The first hour, minute, and second of the temporal coverage period being described.	HH:MM:SSSSSSZ	T	PGE
RangeEndingDate	The last year, month, and day when the temporal coverage period being described.	YYYY-MM-DD	DT	PGE
RangeEndingTime	The last hour, minute, and second of the temporal coverage period being described.	HH:MM:SSSSSSZ	T	PGE
PGEVersion	The Release of the PGE software: e.g. "R6.1.2"	-	A10	PGE

4.9.3 Production History Metadata

The Production History Metadata is implemented as a single text block and written to the HDF file as a file level attribute. The Production History text block contains information about the L2 PGE and the running execution of the PGE to produce ESDT standard products. Static information in the text block describes the elements that make up the PGE like build configuration, support files and database table population. Dynamic information describes all the running parameters involved in a PGE execution for a specific RUN ID. This information is captured for both pre and post execution of the L2 Product PGE.

Table 4-18: L2 Production History

History Data	Data Description	Size (K)	State
ECS	Toolkit file for input/output file specification	23	Dynamic
Environment Variable	SIPS environment variables	5	Dynamic
Fetch	SIPS fetch list from archived	5	Dynamic
SIPS PCF	SIPS-specific PCF file for PGE processing	3	Dynamic
Workspace List (PRE)	File listing in SIPS PGE workspace prior to PGE execution	5	Dynamic
Workspace List (POST)	File listing in SIPS PGE workspace following PGE execution	5	Dynamic
Runtime	CPU and Wallclock PGE run time	0.1	Dynamic
Control Definition	Framework Parameter Definition File for output files	1	Static
Control Parameter	Framework Parameter Specification File for output files	0.02	Static
Control Parameter (Runtime)	Framework Parameter specified in the command line of the PGE	0.02	Dynamic
TimeStamp	RUN ID begin date and end date timestamp	0.05	Dynamic
README	README file that describes production history context	1	Static
PGE Version	PGE version information	0.2	Static
PGE specific configurations	TBD	TBD	TBD

4.9.4 TES-Common Metadata

Metadata shown below is common to all TES files. For Level 2, these are implemented as File Level Attributes (HDF-EOS Global File Attributes). This is information that helps to describe this particular data set. It can be useful in labeling plots, calculating dates, etc.. These will be set via calls to he5_ehwrglatt(HE5_EHwriteglbattr for C users).

Data Layer Name Valids HDF-EOS 5 Type Data Description NATIVE CHAR InstrumentName TES ProcessLevelL1B,L2,L3,etc. NATIVE_CHAR TAI93At0zOfGranule NATIVE DOUBLE GlobalSurveyNumber/ID Run ID NATIVE_INT NATIVE_INT 1-12 GranuleMonth Month granule was produced (from ECS MD RangeBeginningDate) 1-31 8 NATIVE_INT GranuleDay Day granule was produced (from ECS MD RangeBeginningDate) GranuleYear Year granule was produced (from NATIVE INT ECS MD RangeBeginningDate) SurveyMode Type of survey, e.g., Global or NATIVE_CHAR Special **PGEVersion** Release of PGE Software: e.g. NATIVE_CHAR "R6.1.2" Command_Seq_ID Command Sequence (Run) ID N/A 32 NATIVE_INT32

Table 4-19: TES-Common-Metadata

4.9.5 TES-L2-Common

Metadata shown below is common to all TES L2 files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes). This is information which helps describe the swath to which it is attached. These will be set via calls to he5_swwrattr (HE5_SWwriteattr for C users).

HDF-EOS 5 Type Data Layer Name Data Description Data Range Units Size "Pressure", "Altitude", "Potential VerticalCoordinate NATIVE_CHAR Temperature" Wave number array corresponding cm⁻¹ 32 NATIVE_FLOAT CloudFrequency 600.0-to retrieved Cloud Effective Optical 2250.0 Depth points. 25 values.

Table 4-20: TES-L2-Common-Metadata

Data Layer Name	Data Description	Data Range	Units	Size	HDF-EOS 5 Type
Emissivity Wavenumber	Wavenumber array corresponding to retrieval emissivity points. 121 values.	600.0 - 3500.0	cm ⁻¹	32	NATIVE_FLOAT

4.9.6 TES-L2-Nadir Metadata

Metadata shown below are common to all TES L2 Nadir files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes) attached to the NadirSwath groups. This is information which helps describe the swath to which it is attached. These will be set via calls to he5_swwrattr (HE5_SWwriteattr for C users).

Table 4-21: TES-L2-Nadir-Metadata

Data Layer Name	Data Definition	Data Range	Units	Size	HDF-EOS 5 Type
Scan_Resolution	Designates Low or High Resolution for this view	'High', 'Low			NATIVE_CHAR
Pressure	Dimensioned over superset of UARS Levels only. 66 values.		hPa	32	NATIVE_FLOAT

4.9.7 TES-L2-Limb Metadata

Metadata shown below are common to all TES L2 Limb files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes) attached to the Limb1Swath group. This is information which helps describe the swath to which it is attached. These will be set via calls to he5 swwrattr (HE5 SWwriteattr for C users).

Table 4-22: TES-L2-Limb1-Metadata

Data Layer Name	Definition	Data Range	Units	Size	HDF-EOS 5 Type
Scan_Resolution	Designates Low or High Resolution for this view	'High', 'Low			NATIVE_CHAR
Pressure	Dimensioned over superset of UAR Levels only. 87 values.		hPa	32	NATIVE_FLOAT

5. LEVEL 2 SUMMARY PRODUCT

5.1 Overview

The Level 2 Summary Product is essentially a subset of all of the L2 Standard or Special Observation Products generated for a run combined into one product. Subsets of data for each species and of ancillary data are combined into one file. Besides having fewer data fields per species, in addition, the number of pressure levels the data are reported on is less: only the standard 15 UARS pressure levels plus the surface or cloud top.

For nadir observations, TES L2 standard products are produced for the following molecular species: H₂O, O₃, CH₄, CO, HDO, AtmT (atmosphieric temperature). For limb observations, L2 standard products include more molecular species: H₂O, O₃, CH₄, CO, HDO, NO₂, HNO₃, and AtmT. When combined into one Summary Product, each view and species combination then becomes a Swath object within the file (though not all view/species combinations may be present.)

Table 5-1: View and Species Types

Species	H2O	О3	CH4	CO	HDO	NO2	HNO3	AtmT
Nadir Swath Objects	X	X	X	X	X			X
Limb Swath Objects	X	X	X	X	X	X	X	X

In addition, a subset of datafields from the TES L2 Ancillary Data product is placed into Swath objects in the file.

To facilitate sharing data products between all Aura platform science teams, the organization of the L2 Summary Product also conforms to specifications dictated in the <u>HDF-EOS Aura File Format Guidelines</u> (Craig, et al). These guidelines lay down the basic file format and data format specifications for all L2 standard products. The L2 Summary Product though only contains a subset of all of the data and geolocation fields identified as TES parameters.

The Local Granule ID is a unique identifier for locally produced granules that are then sent to the ECS for archive. The Local Granule ID is also the filename of the data product produced by Level 2. The L2 Summary product file is also implemented using the HDF-EOS 5 file format. HDF-EOS 5 files have a default extension of ".he5". The ECS Local Granule ID (filename) for a L2 Summary product is constructed using the following template:

TES-Aura L2-SUMMARY r<run id> <version id>.he5

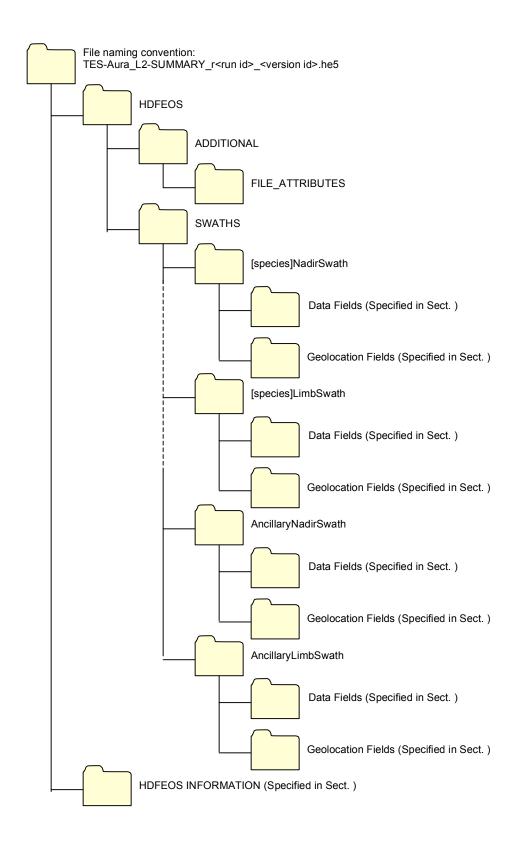

The table below lists each of the TES L2 Summary product ESDT.

Table 5-2: TES L1B Standard Products

ESDT Short Name	ECS File Type	Collection Summary	File Name
TL2SUM	HDF-EOS 5	TES Aura L2 Summary Product	TES-Aura_L2-SUMMARY_rnnnnnnnnn_Fff_cc.he5

5.2 Summary Product File Structure

The file structure of the Summary Product is depicted in the figure below. In addition to the swath objects, each standard product also contains descriptive metadata. The organization and layout of metadata conforms to HDF-EOS guidelines. First, an ECS Metadata block, metadata that includes a set of mandatory data describing attributes about the standard product is found at the beginning of every standard product. TES-specific metadata follows the ECS metadata. These metadata fields are used to describe TES specific details. Some of these data will be common among all TES products, some common only to TES Level 2 products, and some specific only to the L2 Summary product.

5-2

There can be multiple [species]NadirSwath and [species]LimbSwath in the file, where [species] can be H2O, O3, CH4, CO, HDO, NO2, HNO3, or AtmT.

5.3 Nadir Objects Data Fields

The Nadir Data Fields consist of primary data fields, which are VMR or temperature profiles and other data dimensioned by time and pressure levels, and the associated data fields, which are only dimensioned by time.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5 swwrlattr (HE5 SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999		Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrument names (in alphabetical order)		NATIVE_CHAR

5.3.1 Nadir Primary Data Fields

The table below shows the swath data dimensions. The pressure levels as shown in this table are the 15 pressure levels plus one surface level as described in the Overview.

All nadir swath data fields are based on a unified data structure and are used to report results of retrievals of spectra received from the L1B subsystem. The VMR data for the particular species of interest is the primary data element of each swath data layer. It is accompanied by various indices of error that help in evaluating the quality of the retrieval.

Ideally, species and associated precision and quality measures will be populated for all Target Scenes in the global survey. However, there will be times where completing retrievals will not be possible. The causes will be varied and might be due to bad spectra (based on evaluation by L1B), excessive cloud cover, or the retrieval was not performed for scheduling or other administrative reasons. Regardless of the cause for missing data, certain swath data fields will be set to a fill value according to the <u>HDF-EOS Aura File Format Guidelines</u>. Additionally, cloud cover may prevent retrieval down to the Earth's surface, resulting in partial retrievals. When such cases occur, pressure layers will contain fill values when no data exists.

Table 5-2: Primary Data Dimensions Definitions

Dimension Name	Valid Value (Description)
nLevels	16 pressure levels
nTimes	Number of reported observations

Data Field Name / Title * HDF-EOS 5 Type Data Descriptions Units Data Range Size VMR data or temperature data VMR or [species] (dim nLevels x nTimes) 32 NATIVE FLOAT [species]Precision Square-roots of diagonal elements VMR or the measurement error covariance NATIVE_FLOAT 32 (dim nLevels x nTimes) TotalError Square-roots of diagonal elements VMR or the output total error covariance K 32 NATIVE_FLOAT (includes smoothing error, systematic error, and measurement error) (dim nLevels x nTimes) Pressure List of the 16 Pressure Levels hPa 0.001-1300.0 NATIVE FLOAT used (dim nLevels x nTimes) 0-70000 NATIVE_FLOAT Altitude Derived altitude for each pressure 32 meters (dim nLevels x nTimes)

Table 5-3: Nadir Primary Data Fields

5.3.2 Nadir Associated Data Fields

The table below provides the associated data dimensions. The data items shown in the following tables are also included in the Swath Data as Associated Data:

Table 5-4: Associated Data Field Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations

Table 5-5: Nadir Associated Data Fields

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
Scan_Averaged_Count	Number of scans averaged into a single target scene	N/A	1-40 1 = no	8	NATIVE_INT8
SpeciesRetrievalQuality	(dim nTimes) Species Retrieval Quality flag. True means retrieval passed quality check and reported errors are accurate. (dim nTimes)	n/a	averaging 0 = poor quality 1 = passed quality chec	8	NATIVE_INT8
CloudTopPressure	Pressure of inferred cloud top (specie independent) (dim nTimes)	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudTopPressureError	Error on Cloud Top Pressure (dim nTimes)	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepthAv eraged	Vertical optical depth for the retrieved non-scattering cloud calculated using a weighted average of frequencies between 975 & 1200 (dim nTimes)	n/a	0.0500.0	32	NATIVE_FLOAT

^{*} Where [species] equals H2O, O3, CH4, CO, HDO, or Temperature

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
CloudEffectiveOpticalDepthErr orAveraged	Error for Cloud Effective Optical Depth calculated using a weighted average of frequencies between 975 & 1200 (dim nTimes)	n/a	0.0500.0	32	NATIVE_FLOAT
SurfaceTemperature	Retrieved surface temperature (specie independent) (dim nTimes)	K	150.0 - 350	32	NATIVE_FLOAT
SurfaceTempError	Error in retrieved surface temperature (species independent) (dim nTimes)	K	0.0 – 20.0	32	NATIVE_FLOAT
TotalColumnDensity	Total column amount computed from the retrieved profile (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
TotalColumnDensityError	Error in total column amount computed from total error covariance (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
SpeciesRetrievalConverged	Indicates whether the non-linear least squares solver converged to a minimum. True=1, False=0 (dim nTimes)	N/A	0 or 1 (Boolean)	8	NATIVE_INT8
DeviationVsRetrievalCovariance	Deviation vs. Retrieval Covariance (dim nTimes)		0.0 - 10000.0	32	NATIVE_FLOAT
RadianceResidualMean	Mean of the model and data radiance difference (per species). (dim nTimes)		-1000.0 - 1000.0	32	NATIVE_FLOAT
RadianceResidualRMS	RMS of model and data difference (dim nTimes)		0.0 - 100.0	32	NATIVE_FLOAT
RadianceResidualMax	Maximum absolute difference between model and data (dim nTimes)		-10000.0 - 10000.0	32	NATIVE_FLOAT
NumberIterPerformed	Actual number of iterations performe (dim nTimes)	Integer	Small number, typically < 8 and could be 0	8	NATIVE_INT8
MaxNumIterations	Maximum number of iterations allow for convergence (dim nTimes)	N/A	<100	8	NATIVE_INT8
DegreesOfFreedomForSignal	Number of independent parameters for the profile (trace of the averaging kernel) (dim nTimes)	N/A	0.0—1000.0	32	NATIVE_FLOAT
InformationContent	Relative decrease in error volume with respect to a priori (dim nTimes)	N/A	-100.0— 1000.0	32	NATIVE_FLOAT

5.4 Limb Objects Data Fields

Like the Nadir Data Fields, the Limb Data Fields consist of the primary data fields, which are VMR or temperature profiles and other data dimensioned by time and pressure levels, and the associated data fields, which are only dimensioned by time.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5 swwrlattr (HE5 SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999		Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrument names (in alphabetical order)		NATIVE_CHAR

5.4.1 Limb Primary Data Fields

All swath data fields are based on a unified data structure and are used to report results of retrievals of spectra received from the L1B subsystem. The VMR data for the particular species of interest is the primary data element of each swath data layer. It is accompanied by various indices of error that help in evaluating the quality of the retrieval.

Ideally, species and associated precision and quality measures will be populated for all Target Scenes in the global survey. However, there will be times where completing retrievals will not be possible. The causes will be varied and might be due to bad spectra (based on evaluation by L1B), excessive cloud cover, or the retrieval was not performed for scheduling or other administrative reasons. Regardless of the cause for missing data, certain swath data fields will be set to a fill value according HDF-EOS Aura File Format Guidelines. Additionally, cloud cover may prevent retrieval down to the Earth's surface, resulting in partial retrievals. When such cases occur, pressure layers will contain fill values when no data exists.

Table 5-6: Primary Data Fields Dimensions Definitions

Dimension Name	Valid Value (Description)		
nLevels	16 pressure levels		
nTimes	Number of reported observations		

Table 5-7: Limb Primary Data Fields

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
[species]	VMR data or temperature data (for retrieved temperature) (dim nLevels x nTimes)	VMR or K		32	NATIVE_FLOAT
[species]Precision	Square-roots of diagonal elements of the measurement error covariance (dim nLevels x nTimes)	VMR or K		32	NATIVE_FLOAT

Data Field Name / Title *	Data Descriptions	Units	Data Range	Size	HDF-EOS 5 Type
TotalError	Square-roots of diagonal elements of the output total error covariance (includes smoothing error, systemat error, and measurement error) (dim nLevels x nTimes)	K		32	NATIVE_FLOAT
Pressure	List of the 16 Pressure Levels used (dim nLevels x nTimes)	hPa	0.001-1300.0	32	NATIVE_FLOAT
Altitude	Derived altitude for each pressure level (dim nLevels x nTimes)	meters	0-70000	32	NATIVE_FLOAT

^{*} Where [species] equals H2O, O3, CH4, CO, HDO, NO2, HNO3, or Temperature

5.4.2 Limb Associated Data Fields

The table below provides the associated data dimensions. The data items shown in the following tables are also included in the Swath Data as Associated Data:

Table 5-8: Associated Data Field Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations

Table 5-9: Limb Associated Data Fields

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpeciesRetrievalQuality	Species Retrieval Quality flag. True means retrieval passed quality check as reported errors are accurate. (dim nTimes)	n/a	0 = poor quality 1 = passed quality chec	8	NATIVE_INT8
CloudTopPressure	Pressure of inferred cloud top (species independent) (dim nTimes)	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudTopPressureError	Error on Cloud Top Pressure (dim nTimes)	hPa	0.001 1300.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepth	Vertical optical depth for the retrieved non-scattering cloud calculated using a weighted average of frequencies between 975 & 1200 (dim nTimes)	n/a	0.0500.0	32	NATIVE_FLOAT
CloudEffectiveOpticalDepthError	Error for Cloud Effective Optical Depth calculated using a weighted average of frequencies between 975 & 1200 (dim nTimes)	n/a	0.0500.0	32	NATIVE_FLOAT
TotalColumnDensity	Total column amount computed from the retrieved profile (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT
TotalColumnDensityError	Error in total column amount computed from total error covariance (dim nTimes)	Molec/cm ²	0 – 10^28	32	NATIVE_FLOAT

Data Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpeciesRetrievalConverged	Indicates whether the non-linear least squares solver converged to a minimum. True=1, False=0 (dim nTimes)		0 or 1 (Boolean)	8	NATIVE_INT8
DeviationVsRetrievalCovariance	Deviation vs. Retrieval Covariance (dim nTimes)		0.0 - 10000.0	32	NATIVE_FLOAT
RadianceResidualMean	Mean of the model and data radiance difference (per species). (dim nTimes)		-1000.0 - 1000.0	32	NATIVE_FLOAT
RadianceResidualRMS	RMS of model and data difference (dim nTimes)		0.0 – 100.0	32	NATIVE_FLOAT
RadianceResidualMax	Maximum absolute difference between model and data (dim nTimes)		-10000.0 - 10000.0	32	NATIVE_FLOAT
NumberIterPerformed	Actual number of iterations performed (dim nTimes)	Integer	Small numb typically < 8 and could be		NATIVE_INT8
MaxNumIterations	Maximum number of iterations allowed for convergence (dim nTimes)		< 100	8	NATIVE_INT8
DegreesOfFreedomForSignal	Number of independent parameters for the profile (trace of the averaging kernel) (dim nTimes)	N/A	0.0—1000.0	32	NATIVE_FLOAT
InformationContent	Relative decrease in error volume with respect to a priori (dim nTimes)	N/A	-100.0— 1000.0	32	NATIVE_FLOAT

5.5 Ancillary Objects Data Fields

The Ancillary Objects contains the Associated Data Fields common to all species.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5 swwrlattr (HE5 SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999		Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrument names (in alphabetical order)		NATIVE_CHAR

Table 5-10: Ancillary Data Dimensions Definitions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations
nFreq	119 frequencies (listed in TES-L2-Common metadata)
nLevels	16 pressure levels

Table 5-11: Ancillary Nadir Data Fields

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpacecraftLatitude	Geodetic latitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 90.0	32	NATIVE_FLOAT
SpacecraftLongitude	Longitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 180.0	32	NATIVE_FLOAT
SpacecraftAltitude	Height referenced to WGS84 ellipsoid (dim nTimes)	meters		32	NATIVE_FLOAT
OrbitAscendingFlag	True=1, False=0 (dim nTimes)		0 or 1 (Boolean)	8	NATIVE_INT8
SolarAzimuthAngle	Solar azimuth angle relative to the local north at the geolocation. (From geolocation table) (dim nTimes)	degrees		32	NATIVE_FLOAT
PixelsUsedFlag	True=1, False=0 (dim nTimes)		64 chars, one for each pixel	520	NATIVE_CHAR
LandSurfaceEmissivity	Retrieved surface emissivity for land nadir targets. Fill values for scenes where emissivity not retrieved. (dim nFreq x nTimes)		0.0 - 2.0	32	NATIVE_FLOAT
LandSurfaceEmissErrors	Errors in retrieved surface emissivity for land nadir targets. Fill values for scenes where emissivity not retrieved. (dim nFreq x nTimes)			32	NATIVE_FLOAT
Filter_Position_1A	Filter position for Focal Plane 1A (dim nTimes)	N/A	1-5	8	NATIVE_INT8
Filter_Position_1B	Filter position for Focal Plane 1B (dim nTimes)	N/A	1-2	8	NATIVE_INT8
Filter_Position_2A	Filter position for Focal Plane 2A (dim nTimes)	N/A	1-4	8	NATIVE_INT8
Filter_Position_2B	Filter position for Focal Plane 2B (dim nTimes)	N/A	1	8	NATIVE_INT8

Table 5-12: Ancillary Limb Data Fields

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpacecraftLatitude	Geodetic latitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 90.0	32	NATIVE_FLOAT

Ancillary Data Fields / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
SpacecraftLongitude	Longitude referenced to WGS84 ellipsoid (dim nTimes)	degrees	± 180.0	32	NATIVE_FLOAT
SpacecraftAltitude	Height referenced to WGS84 ellipsoid (dim nTimes)	meters		32	NATIVE_FLOAT
OrbitAscendingFlag	True=1, False=0 (dim nTimes)		0 or 1 (Boolean)	8	NATIVE_INT8
SolarAzimuthAngle	Solar azimuth angle relative to local north at the spacecraft. (dim nTimes)	degrees		32	NATIVE_FLOAT
PixelsUsedFlag	True=1, False=0 (dim nTimes)		64 chars, one for each pixel	520	NATIVE_CHAR
RetrievedPointingAngle	Retrieved value of the boresight nadir angles using TES limb spectral radiances. (Limb only)	degrees		32	NATIVE_FLOAT
RetrievedPointingAngleError	(dim nTimes) Error of retrieved value of the boresight nad angles using TES limb spectral radiances. (Limb only) (dim nTimes)	degrees		32	NATIVE_FLOAT
Filter_Position_1A	Filter position for Focal Plane 1A (dim nTimes)	N/A	1-5	8	NATIVE_INT8
Filter_Position_1B	Filter position for Focal Plane 1B (dim nTimes)	N/A	1-2	8	NATIVE_INT8
Filter_Position_2A	Filter position for Focal Plane 2A (dim nTimes)	N/A	1-4	8	NATIVE_INT8
Filter_Position_2B	Filter position for Focal Plane 2B (dim nTimes)	N/A	1	8	NATIVE_INT8

5.6 Geolocation Fields

The Geolocation Data is used to provide generic geolocation and spacecraft pointing information. This information is included with each species and ancillary Swath.

Each Data Field will be annotated using HDF-EOS Local Attributes which are listed in the table below. Data Field Attributes are a feature which can be useful in annotating plots as well as describing the data product to input routines. These attributes will be set via calls to he5_swwrlattr (HE5_SWwritelocattr for C users).

Attribute Name	Attribute Description	Size	HDF-EOS 5 Type
MissingValue	Contains the value for missing data. 32 float: -999.0 64 double: -999.0 32 int: -999 16 int: -999 8 int: -999		Same type as Data Field
Title	For labeling a plot or axis.		NATIVE_CHAR
Units	Labeling units (for labeling color bars, converting between units, etc).		NATIVE_CHAR
UniqueFieldDefinition	Describes if definition of field is shared with other Aura Instruments ("Aura-Shared", "X-Specific", where X=Instrument Name, "X-Y[-Z]-Shared" where X,Y, and optional Z are instrumental mames (in alphabetical order)		NATIVE_CHAR

The values used for these attributes are also in the data fields tables below.

Table 5-13: Geolocation Dimensions

Dimension Name	Valid Value (Description)
nTimes	Number of reported observations

Table 5-14: Nadir Geolocation Fields

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
Sequence	Sequence number within a run (dim nTimes)	n/a		16	NATIVE_INT16
Scan	Scan number within a sequence, or if averaging was performed, first scan of an averaged set. (dim nTimes)	n/a		16	NATIVE_INT16
Time	Time (TAI93) of ZPD (Zero Path Difference) (dim nTimes)	sec		64	NATIVE_DOUBLE
Latitude	Geodetic Latitude (dim nTimes)	Decimal degrees	± 90.0	32	NATIVE_FLOAT
Longitude	Geodetic Longitude (dim nTimes)	Decimal degrees	± 180.0	32	NATIVE_FLOAT
SurfaceElevStandardDeviation	From DEM, standard deviation of average elevation over footprint (dim nTimes)	meters		32	NATIVE_FLOAT
SurfaceTypeFootprint	From DEM, 1=Fresh Water, 2=Salt Water, 3=Land, 4=Mixed (not 100% of FW, SW, or Land)	Enumer- ated	14	8	NATIVE_INT8
BoresightNadirAngle	TES boresight (LOS) nadir angle relative to the local nadir at SC (dim nTimes)	Decimal degrees	090	64	NATIVE_DOUBLE
BoresightNadirAngleUnc	Uncertainty in TES boresight nadir angle (dim nTimes)	Decimal degrees	±90	64	NATIVE_DOUBLE
BoresightAzimuth	TES boresight (LOS) azimuth angle relative to the local north at SC (dim nTimes)	Decimal degrees	0360	64	NATIVE_DOUBLE
SolarZenithAngle	Solar zenith relative to the local zenith at the spacecraft (dim nTimes)	degrees	0180	32	NATIVE_FLOAT
LocalSolarTime	Local solar time at target geolocation. Computed from target longitude and UTC. (dim nTimes)	hours		32	NATIVE_FLOAT
Tgt_SpacecraftZenith	TES boresight (LOS) zenith angle relative to the local zenith at the target geolocation. (dim nTimes)	degrees	±90	32	NATIVE_FLOAT

Ī	Tgt_SpacecraftAzimuth	TES boresight (LOS) azimuth angle relative to the local north at the target	degrees (ea	±90	32	NATIVE_FLOAT
		geolocation.	or norm)			
		(dim nTimes)				

Table 5-15: Limb Geolocation Fields

Geolocation Fields Name / Title	Data Description	Units	Data Range	Size	HDF-EOS 5 Type
Sequence	Sequence number within a run (dim nTimes)	n/a		16	NATIVE_INT16
Scan	Scan number within a sequence, or if averaging was performed, first scan of an averaged set. (dim nTimes)	n/a		16	NATIVE_INT16
Time	Time (TAI93) of ZPD (Zero Path Difference) (dim nTimes)	sec		64	NATIVE_DOUBLE
Latitude	Geodetic Latitude (dim nTimes)	degrees	± 90.0	32	NATIVE_FLOAT
Longitude	Geodetic Longitude (dim nTimes)	degrees	± 180.0	32	NATIVE_FLOAT
SurfaceElevStandardDeviation	From DEM, standard deviation of average elevation over footprint (dim nTimes)	meters		32	NATIVE_FLOAT
SurfaceTypeFootprint	From DEM, 1=Fresh Water, 2=Salt Water, 3=Land, 4=Mixed (not 100% of FW, SW, or Land)	Enumer- ated	14	8	NATIVE_INT8
BoresightNadirAngle	TES boresight (LOS) nadir angle relative to local nadir at SC (dim nTimes)	Decimal degrees	0180	64	NATIVE_DOUBLE
BoresightNadirAngleUnc	Uncertainty in TES boresight nadir angle (dim nTimes)	Decimal degrees	±90	64	NATIVE_DOUBLE
BoresightTangentHeight	Geodetic elevation of instrument boresight at the tangent point (around 16 km) (dim nTimes)	meters		32	NATIVE_FLOAT
BoresightTangentHeightUnc	TES Boresight Tangent Height uncertainty (dim nTimes)	meters		32	NATIVE_FLOAT
BoresightAzimuth	TES boresight (LOS) azimuth angle relative to local north at SC (dim nTimes)	Decimal degrees	0360	64	NATIVE_DOUBLE
SolarZenithAngle	Solar zenith relative to the local zenith at the spacecraft (dim nTimes)	degrees		32	NATIVE_FLOAT
LocalSolarTime	Local solar time at target geolocation. Computed from target longitude and UTC. (dim nTimes)	hours		32	NATIVE_FLOAT
Tgt_SpacecraftZenith	TES boresight (LOS) zenith angle relative to the local zenith at the target geolocation.	degrees	±90	32	NATIVE_FLOAT
	(dim nTimes)				

Tgt_SpacecraftAzimuth	TES boresight (LOS) azimuth angle relative to the local north at the target	degrees (ea of north)	±90	32	NATIVE_FLOAT
	geolocation.	,			
	(dim nTimes)				

5.7 L2 ECS and TES-specific Metadata

5.7.1 Introduction

As with all ESDTs, TES ESDTs contain metadata that describes specific attributes about the data or the quality of data contained in the ESDT. Some of the basic metadata items are required by EOSDIS. These data items commonly include basic identification information and other generic information about the particular ESDT. These data items are referred to as ECS Inventory Metadata. In addition to ECS Inventory Metadata, additional TES ESDTs contain additional metadata more specific to the TES program. The TES-specific metadata has been subdivided into subcategories based on the uniqueness of its origin and identification:

> **Production History** Production History Metadata

TES-Common Metadata common to all TES ESDTs

3. TES-L2-Common Metadata common to all Level 2 ESDTs

TES common metadata are fairly generic to the entire family of TES ESDTs or to TES L2 products. TES-L2observation specific, as described by name, are unique to a particular family of L2 ESDTs.

5.7.2 **ECS Inventory Metadata**

The table below shows the ECS Inventory Metadata. The ECS Inventory Metadata is implemented in the HDF file as text block named coremetadata within a group named HDFEOS INFORMATION.

TES Valids Data Layer Name Data Description Source Type³ AssociatedInstrumentShortName Instrument short name supplied by TES project. TES VA20 MCF AssociatedPlatformShortName Platform short name supplied by EOS project. VA20 MCF Aura AssociatedSensorShortName Sensor short name supplied by TES project. FTS VA20 MCF Mode of operation of the instrument. Calibration VA20 OperationMode MCF Routine This name will identify the ESDT short name ShortName (set in MCF) A8 MCF associated with the collection or granule. SI VersionID Version identifier of the ESDT data collection. (set in MCF) MCF YYYY-MM-DDT ProductionDateTime The date and time a specific granule was produced DT TK a PGE. HH:MM:SS.SSSZ SizeMBECSDataGranule The size attribute will indicate the volume of data DSS contained in the granule.

Table 5-16: ECS Inventory Metadata

³ Data types and Sources given are specified in document [3] on page 1-1.

Data Layer Name	Data Description	TES Valids	Type ³	Source
LocalGranuleID	Unique identifier for locally produced granule that ECS ingests and is required to capture.	e.g., TES-Aura_L2- SUMMARY_r0000 000001_F01_01.he5	VA80	PGE
LocalVersionID	Local version identifier for PGE defined granule versions. Takes the form "executable name: Clearcase label"		VA60	PGE
InputPointer	Description of location of Production History information.	"Production History block at: /HDFEOS/ADDITI ONAL/FILE_ATTR IBUTES/PRODUC TION HISTORY"		PGE
ParameterName	Scope of quality flags. For TES, refers to entire granule.	Granule	A40	PGE
ScienceQualityFlag	The granule level flag applying generally to the granule and specifically to parameters at the granule level.	Passed Failed Being Investigated Not Investigated Inferred Passed Inferred Failed Suspect	VA25	DP
ScienceQualityFlagExplanation	A text explanation of the criteria used to set the ScienceQualityFlag including thresholds or other criteria.	(Free text)	VA255	DP
RangeBeginningDate	The year, month, and day when the temporal coverage period being described began.	YYYY-MM-DD	DT	PGE
RangeBeginningTime	The first hour, minute, and second of the temporal coverage period being described.	HH:MM:SS.SSSZ	T	PGE
RangeEndingDate	The last year, month, and day when the temporal coverage period being described.	YYYY-MM-DD	DT	PGE
RangeEndingTime	The last hour, minute, and second of the temporal coverage period being described.	HH:MM:SS.SSSZ	T	PGE
PGEVersion	The Release of the PGE software: e.g. "R6.1.2"		A10	PGE

5.7.3 Production History Metadata

The Production History Metadata is implemented as a single text block and written to the HDF file as a file level attribute. The Production History text block contains information about the L2 PGE and the running execution of the PGE to produce ESDT standard products. Static information in the text block describes the elements that make up the PGE like build configuration, support files and database table population. Dynamic information describes all the running parameters involved in a PGE execution for a specific RUN ID. This information is captured for both pre and post execution of the L2 Product PGE.

Table 5-17: L2 Production History

History Data	Data Description	Size (K)	State
ECS	Toolkit file for input/output file specification	23	Dynamic
Environment Variable	SIPS environment variables	5	Dynamic
Fetch	SIPS fetch list from archived	5	Dynamic
SIPS PCF	SIPS-specific PCF file for PGE processing	3	Dynamic
Workspace List (PRE)	File listing in SIPS PGE workspace prior to PGE execution	5	Dynamic
Workspace List (POST)	File listing in SIPS PGE workspace following PGE execution	5	Dynamic
Runtime	CPU and Wallclock PGE run time	0.1	Dynamic
Control Definition	Framework Parameter Definition File for output files	1	Static
Control Parameter	Framework Parameter Specification File for output files	0.02	Static
Control Parameter (Runtime)	Framework Parameter specified in the command line of the PGE	0.02	Dynamic
TimeStamp	RUN ID begin date and end date timestamp	0.05	Dynamic

README	README file that describes production history context	1	Static
PGE Version	PGE version information	0.2	Static
PGE specific configurations	TBD	TBD	TBD

5.7.4 TES-Common Metadata

Metadata shown below is common to all TES files. For Level 2, these are implemented as File Level Attributes (HDF-EOS Global File Attributes). This is information that helps to describe this particular data set. It can be useful in labeling plots, calculating dates, etc.. These will be set via calls to he5_ehwrglatt(HE5_EHwriteglbattr for C users).

Data Layer Name Data Description Valids HDF-EOS 5 Type TES NATIVE CHAR InstrumentName char ProcessLevel L1B,L2,L3,etc. NATIVE CHAR char TAI93At0zOfGranule NATIVE_DOUBLE double GlobalSurveyNumber/ID Run ID int NATIVE INT GranuleMonth Month granule was produced (from 1-12 8 NATIVE_INT int ECS MD RangeBeginningDate) GranuleDay Day granule was produced (from 1-31 8 NATIVE INT int ECS MD RangeBeginningDate) Year granule was produced (from NATIVE INT GranuleYear int ECS MD RangeBeginningDate) Type of survey, e.g., Global or NATIVE CHAR SurveyMode char Special **PGEVersion** Release of PGE Software: e.g. NATIVE_CHAR char "R6.1.2" 32 Command Seq ID Command Sequence (Run) ID N/A int NATIVE INT32

Table 5-18: TES-Common-Metadata

5.7.5 TES-L2-Common

Metadata shown below is common to all TES L2 files. These are implemented as Swath Level Attributes (HDF-EOS Group Attributes). This is information which helps describe the swath to which it is attached. These will be set via calls to he5_swwrattr (HE5_SWwriteattr for C users).

Data Layer Name	Data Description	Data Range	Size	Type	HDF-EOS 5 Type
Pressure	Dimensioned over superset of nUARSLevels only. 87 values.			32	NATIVE_FLOAT
VerticalCoordinate	"Pressure", "Altitude", "Potential Temperature"				NATIVE_CHAR
CloudFrequency	Wave number array corresponding to retrieved Cloud Effective Optical Depth points. 25 values.	600.0 2250.0	cm ⁻¹	32	NATIVE_FLOAT
EmissivityWavenumber	Wavenumber array corresponding to retrieval emissivity points. 119 values.	600.0 - 3500.0	cm ⁻¹	32	NATIVE_FLOAT

Table 5-19: TES-L2-Common-Metadata

APPENDIX A -- ACRONYMS

API Application Program Interface

BB Black Body

DEM Digital Elevation Model
DPS Data Products Specification
ECI Earth-Centered Inertial
ECS EOSDIS Core System
EOS Earth Observation System

EOSDIS EOS Data and Information System

ESDIS Earth Science Data and Information System

ESDT Earth Science Data Type

FP Focal Plane

FWHM Full Width at Half Maximum

GDS Ground Data System

HAIS Hughes Applied Information Systems

HDF Hierarchical Data Format
ICD Interface Control Document
ICS Interferometer Control System

ID Identification

JPL Jet Propulsion Laboratory

LOS Line of Sight

MCF Metadata Control File

MD Metadata

NCAR
National Center for Atmospheric Research
NESR
Noise-Equivalent Spectral Radiance
OSE
Operational Support Equipment
OSP
Operational Support Product
PCS
Position Control System
PGE
Product Generation Executive
PRT
Platinum Resistance Thermistor

RMS Root-Mean-Square

SC Spacecraft

SIPS Science Investigator-led Processing System

TAI International Atomic Time

TBD To Be Determined

TES Tropospheric Emission Spectrometer UARS Upper Atmosphere Research Satellite

VMR Volume Mixing Ratio ZPD Zero Path Difference

APPENDIX B -- WORK-OFF PLAN TABLE

Section or Table Number	What's Missing	Targeted Release