Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment


This work is licensed under a Creative Commons Attribution 4.0 International License.
Disciplines: Field Campaigns
Collection | Disciplines | Spatial | Temporal |
---|---|---|---|
ACTIVATE-FLEXPART_1
ACTIVATE FLEXible PARTicle (FLEXPART) Dispersion Model Back-trajectories |
Field Campaigns |
Spatial Coverage: (0, 90), (-180, 180) |
Temporal Coverage: 2020-02-14 - 2022-06-30 |
ACTIVATE_Model_Data_1
ACTIVATE Supplementary Model Data |
Aerosols, Clouds |
Spatial Coverage: (25, 50), (-85, -60) |
Temporal Coverage: 2020-02-14 - 2022-06-30 |
ACTIVATE-MODIS-MERRA2_1
ACTIVATE Merged MODIS and MERRA-2 Dataset |
Clouds, Radiation Budget |
Spatial Coverage: (0, 60), (-85, -25) |
Temporal Coverage: 2013-01-01 - 2022-06-30 |
Collection | Disciplines | Spatial | Temporal |
---|---|---|---|
ACTIVATE_Merge_Data_1
ACTIVATE Falcon Aircraft Merge Data Files |
Aerosols, Clouds |
Spatial Coverage: (25, 50), (-85, -60) |
Temporal Coverage: 2020-02-14 - 2022-06-30 |
ACTIVATE-Satellite_1
ACTIVATE GOES-16 Supplementary Data Products |
Clouds |
Spatial Coverage: (0, 60), (-95, -25) |
Temporal Coverage: 2020-09-20 - 2022-10-31 |
Collection | Disciplines | Spatial | Temporal |
---|---|---|---|
ACTIVATE_Aerosol_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In Situ Aerosol Data |
Aerosols |
Spatial Coverage: (25, 50), (-85, -58.5) |
Temporal Coverage: 2020-02-14 - 2022-06-30 |
ACTIVATE_AerosolCloud_AircraftRemoteSensing_KingAir_Data_1
ACTIVATE King Air Aerosol and Cloud Remotely Sensed Data |
Aerosols, Clouds |
Spatial Coverage: (25, 50), (-85, -58.5) |
Temporal Coverage: 2020-02-10 - 2022-06-30 |
ACTIVATE_Cloud_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In Situ Cloud Data |
Clouds |
Spatial Coverage: (25, 50), (-85, -58.5) |
Temporal Coverage: 2020-02-14 - 2022-06-30 |
ACTIVATE_MetNav_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In-Situ Meteorological and Navigational Data |
Field Campaigns |
Spatial Coverage: (25, 50), (-85, -60) |
Temporal Coverage: 2020-02-10 - 2022-06-20 |
ACTIVATE_MetNav_AircraftInSitu_KingAir_Data_1
ACTIVATE King Air Meteorological and Navigational Data |
Field Campaigns |
Spatial Coverage: (25, 50), (-85, -58.5) |
Temporal Coverage: 2019-12-16 - 2022-06-30 |
ACTIVATE_Miscellaneous_Data_1
ACTIVATE Miscellaneous and Ancillary Data |
Radiation Budget |
Spatial Coverage: (25, 50), (-85, -60) |
Temporal Coverage: 2020-02-10 - 2022-06-30 |
ACTIVATE_TraceGas_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In Situ Trace Gas Data |
Field Campaigns |
Spatial Coverage: (25, 50), (-85, -58.5) |
Temporal Coverage: 2020-02-14 - 2022-06-30 |
ACTIVATE Citations
Tornow F, Ackerman A S and Fridlind A M (2021). Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmospheric Chemistry and Physics, 21 (15), 12049. https://doi.org/10.5194/acp-21-12049-2021
Dadashazar H, Painemal D, Alipanah M, Brunke M, Chellappan S, Corral A F, Crosbie E, Kirschler S, Liu H, Moore R H, Robinson C, Scarino A J, Shook M, Sinclair K, Thornhill K L, Voigt C, Wang H, Winstead E, Zeng X, Ziemba L, Zuidema P and Sorooshian A (2021). Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors. Atmospheric Chemistry and Physics, 21 (13), 10499. https://doi.org/10.5194/acp-21-10499-2021
Braun R A, McComiskey A, Tselioudis G, Tropf D and Sorooshian A (2021). Cloud, Aerosol, and Radiative Properties Over the Western North Atlantic Ocean, Journal of Geophysical Research: Atmospheres. Journal of Geophysical Research: Atmospheres, 126 (14), https://doi.org/10.1029/2020jd034113
Edwards E-L, Corral A F, Dadashazar H, Barkley A E, Gaston C J, Zuidema P and Sorooshian A (2021). Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida. Atmospheric Environment, 254 11837. https://doi.org/10.1016/j.atmosenv.2021.118371
Aldhaif A M, Lopez D H, Dadashazar H, Painemal D, Peters A J and Sorooshian A (2021). An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda. Journal of Geophysical Research: Atmospheres, 126 (9), https://doi.org/10.1029/2020jd034038
Corral A F, Braun R A, Cairns B, Gorooh V A, Liu H, Ma L, Mardi A H, Painemal D, Stamnes S, van Diedenhoven B, Wang H, Yang Y, Zhang B and Sorooshian A (2021). An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry. Journal of Geophysical Research: Atmospheres, 126 (4), https://doi.org/10.1029/2020jd032592
Painemal D, Corral A F, Sorooshian A, Brunke M A, Chellappan S, Afzali Gorooh V, Ham S, O’Neill L, Smith W L Jr, Tselioudis G, Wang H, Zeng X and Zuidema P (2021). An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research: Atmospheres, 126 (6), https://doi.org/10.1029/2020jd033423
Ma L, Dadashazar H, Hilario M R A, Cambaliza M O, Lorenzo G R, Simpas J B, Nguyen P and Sorooshian A (2021). Contrasting wet deposition composition between three diverse islands and coastal North American sites. Atmospheric Environment, 244 11791. https://doi.org/10.1016/j.atmosenv.2020.117919
Corral A F, Dadashazar H, Stahl C, Edwards E-L, Zuidema P and Sorooshian A (2020). Source Apportionment of Aerosol at a Coastal Site and Relationships with Precipitation Chemistry: A Case Study over the Southeast United States. Atmosphere, 11 (11), 1212. https://doi.org/10.3390/atmos11111212
Park H J, Sherman T, Freire L S, Wang G, Bolster D, Xian P, Sorooshian A, Reid J S and Richter D H (2020). Predicting Vertical Concentration Profiles in the Marine Atmospheric Boundary Layer With a Markov Chain Random Walk Model. JGR Atmospheres, 125 (19), https://doi.org/10.1029/2020JD032731
Crosbie E, Shook M A, Ziemba L D, Anderson B E, Braun R A, Brown M D, Jordan C E, MacDonald A B, Moore R H, Nowak J B, Robinson C E, Shingler T, Sorooshian A, Stahl C, Thornhill K L, Wiggins E B and Winstead E (2020). Coupling an online ion conductivity measurement with the particle-into-liquid sampler: Evaluation and modeling using laboratory and field aerosol data. Aerosol Science and Technology, (12), 1542. https://doi.org/10.1080/02786826.2020.1795499
MacDonald A B, Hossein Mardi A, Dadashazar H, Azadi Aghdam M, Crosbie E, Jonsson H H, Flagan R C, Seinfeld J H and Sorooshian A (2020). On the relationship between cloud water composition and cloud droplet number concentration. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-20-7645-2020
Painemal D, Chang F-L, Ferrare R, Burton S, Li Z, Smith Jr. W L, Minnis P, Feng Y and Clayton M (2020). Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations. Atmospheric Chemistry and Physics, 20 (12), https://doi.org/10.5194/acp-20-7167-2020
Schulze B C, Charan S M, Kenseth C M, Kong W, Bates K H, Williams W, Metcalf A R, Jonsson H H, Woods R, Sorooshian A, Flagan R C and Seinfeld J H (2020). Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations. Earth and Space Science, 7 (7), https://doi.org/10.1029/2020EA001098
Schlosser J S, Dadashazar H, Edwards E, Hossein Mardi A, Prabhakar G, Stahl C, Jonsson H H and Sorooshian A (2020). Relationships Between Supermicrometer Sea Salt Aerosol and Marine Boundary Layer Conditions: Insights From Repeated Identical Flight Patterns. JGR Atmospheres, 125 (12), https://doi.org/10.1029/2019JD032346
Dadashazar H, Crosbie E, Majdi M S, Panahi M, Moghaddam M A, Behrangi A, Brunke M, Zeng X, Jonsson H H and Sorooshian A (2020). Stratocumulus cloud clearings: statistics from satellites, reanalysis models, and airborne measurements. Atmospheric Chemistry and Physics, 20 (8), 4637. https://doi.org/2020-04-21
Aldhaif A M, Lopez D H, Dadashazar H and Sorooshian A (2020). Sources, frequency, and chemical nature of dust events impacting the United States East Coast. Atmospheric Environment, 231 https://doi.org/10.1016/j.atmosenv.2020.117456
Sorooshian A, Corral A F, Braun R A, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb M M, Hossein Mardi A, Maring H, McComiskey A, Moore R, Painemal D, Scarino A J, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L and Zuidema P (2020). Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JCR Atmospheres, 125 (6), https://doi.org/10.1029/2019JD031626
Gryspeerdt E, Mülmenstädt J, Gettelman A, Malavelle F F, Morrison H, Neubauer D, Partridge D G, Stier P, Takemura T, Wang H, Wang M and Zhang K (2020). Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 20 (1), https://doi.org/10.5194/acp-20-613-2020
Yu H, Yang Y, Wang H, Tan Q, Chin M, Levy R C, Remer L A, Smith S J, Yuan T and Shi Y (2020). Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmospheric Chemistry and Physics, 20 (1), 139. https://doi.org/10.5194/acp-20-139-2020
Hossein Mardi A, Dadashazar H, MacDonald A B, Crosbie E, Coggon M M, Azadi Aghdam M, Woods R K, Jonsson H H, Flagan R C, Seinfeld J H and Sorooshian A (2019). Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. Atmospheres, 124 (22), 12301. https://doi.org/10.1029/2019JD031159
Brunke M A, Ma P, Reeves Eyre J E J, Rasch P J, Sorooshian A and Zeng X (2019). Subtropical Marine Low Stratiform Cloud Deck Spatial Errors in the E3SMv1 Atmosphere Model. Geophysical Research Letters, 46 (21), 12598. https://doi.org/10.1029/2019GL084747
Sorooshian A, Anderson B, Bauer S E, Braun R A, Cairns B, Crosbie E, Dadashazar H, Diskin G, Ferrare R, Flagan R C, Hair J, Hostetler C, Jonsson H H, Kleb M M, Liu H, MacDonald A B, McComiskey A, Moore R, Painemal D, Russell L M, Seinfeld J H, Shook M, Smith W L, Thornhill K, Tselioudis G, Wang H, Zeng X, Zhang B, Ziemba L and Zuidema P (2019). Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 100 (8), 1511. https://doi.org/10.1175/bams-d-18-0100.1
Fanourgakis G S, Kanakidou M, Nenes A, Bauer S E, Bergman T, Carslaw K S, Grini A, Hamilton D S, Johnson J S, Karydis V A, Kirkevåg A, Kodros J K, Lohmann U, Luo G, Makkonen R, Matsui H, Neubauer D, Pierce J R, Schmale J, Stier P, Tsigaridis K, van Noije T, Wang H, Watson-Parris D, Westervelt D M, Yang Y, Yoshioka M, Daskalakis N, Decesari S, Gysel-Beer M, Kalivitis N, Liu X, Mahowald N M, Myriokefalitakis S, Schrödner R, Sfakianaki M, Tsimpidi A P, Wu M and Yu F (2019). Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 19 (13), 8591. https://doi.org/10.5194/acp-19-8591-2019