Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment

Marine boundary layer clouds play a critical role in Earth’s energy balance and water cycle. These clouds cover more than 45% of the ocean surface and exert a net cooling effect. The Aerosol Cloud meTeorology Interactions oVer the western Atlantic Experiment (ACTIVATE) project is a five-year project that provides important globally-relevant data about changes in marine boundary layer cloud systems, atmospheric aerosols and multiple feedbacks that warm or cool the climate. ACTIVATE studies the atmosphere over the western North Atlantic and samples its broad range of aerosol, cloud and meteorological conditions using two aircraft, the UC-12 King Air and HU-25 Falcon. The UC-12 King Air will primarily be used for remote sensing measurements while the HU-25 Falcon will contain a comprehensive instrument payload for detailed in-situ measurements of aerosol, cloud properties, and atmospheric state. A few trace gas measurements will also be onboard the HU-25 Falcon for the measurements of pollution traces, which will contribute to airmass classification analysis. A total of 150 coordinated flights over the western North Atlantic are planned through 6 deployments from 2020-2022. The ACTIVATE science observing strategy intensively targets the shallow cumulus cloud regime and aims to collect sufficient statistics over a broad range of aerosol and weather conditions which enables robust characterization of aerosol-cloud-meteorology interactions. This strategy is implemented by two nominal flight patterns: Statistical Survey and Process Study. The statistical survey pattern involves close coordination between the remote sensing and in-situ aircraft to conduct near coincident sampling at and below cloud base as well as above and within cloud top. The process study pattern involves extensive vertical profiling to characterize the target cloud and surrounding aerosol and meteorological conditions.

ACTIVATE Project Page

DOI: 10.5067/SUBORBITAL/ACTIVATE/DATA001

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Disciplines:   Field Campaigns
Collection Disciplines Spatial Temporal
ACTIVATE-FLEXPART_1
ACTIVATE FLEXible PARTicle (FLEXPART) Dispersion Model Back-trajectories
Field Campaigns Spatial Coverage:
(0, 90), (-180, 180)
Temporal Coverage:
2020-02-14 - 2022-06-30
ACTIVATE_Model_Data_1
ACTIVATE Supplementary Model Data
Aerosols,  Clouds Spatial Coverage:
(25, 50), (-85, -60)
Temporal Coverage:
2020-02-14 - 2022-06-30
ACTIVATE-MODIS-MERRA2_1
ACTIVATE Merged MODIS and MERRA-2 Dataset
Clouds,  Radiation Budget Spatial Coverage:
(0, 60), (-85, -25)
Temporal Coverage:
2013-01-01 - 2022-06-30
Collection Disciplines Spatial Temporal
ACTIVATE_Merge_Data_1
ACTIVATE Falcon Aircraft Merge Data Files
Aerosols,  Clouds Spatial Coverage:
(25, 50), (-85, -60)
Temporal Coverage:
2020-02-14 - 2022-06-30
ACTIVATE-Satellite_1
ACTIVATE GOES-16 Supplementary Data Products
Clouds Spatial Coverage:
(0, 60), (-95, -25)
Temporal Coverage:
2020-09-20 - 2022-10-31
Collection Disciplines Spatial Temporal
ACTIVATE_Aerosol_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In Situ Aerosol Data
Aerosols Spatial Coverage:
(25, 50), (-85, -58.5)
Temporal Coverage:
2020-02-14 - 2022-06-30
ACTIVATE_AerosolCloud_AircraftRemoteSensing_KingAir_Data_1
ACTIVATE King Air Aerosol and Cloud Remotely Sensed Data
Aerosols,  Clouds Spatial Coverage:
(25, 50), (-85, -58.5)
Temporal Coverage:
2020-02-10 - 2022-06-30
ACTIVATE_Cloud_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In Situ Cloud Data
Clouds Spatial Coverage:
(25, 50), (-85, -58.5)
Temporal Coverage:
2020-02-14 - 2022-06-30
ACTIVATE_MetNav_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In-Situ Meteorological and Navigational Data
Field Campaigns Spatial Coverage:
(25, 50), (-85, -60)
Temporal Coverage:
2020-02-10 - 2022-06-20
ACTIVATE_MetNav_AircraftInSitu_KingAir_Data_1
ACTIVATE King Air Meteorological and Navigational Data
Field Campaigns Spatial Coverage:
(25, 50), (-85, -58.5)
Temporal Coverage:
2019-12-16 - 2022-06-30
ACTIVATE_Miscellaneous_Data_1
ACTIVATE Miscellaneous and Ancillary Data
Radiation Budget Spatial Coverage:
(25, 50), (-85, -60)
Temporal Coverage:
2020-02-10 - 2022-06-30
ACTIVATE_TraceGas_AircraftInSitu_Falcon_Data_1
ACTIVATE Falcon In Situ Trace Gas Data
Field Campaigns Spatial Coverage:
(25, 50), (-85, -58.5)
Temporal Coverage:
2020-02-14 - 2022-06-30

ACTIVATE Citations

Tornow F, Ackerman A S and Fridlind A M (2021). Preconditioning of overcast-to-broken cloud transitions by riming in marine cold air outbreaks. Atmospheric Chemistry and Physics, 21 (15), 12049. https://doi.org/10.5194/acp-21-12049-2021


Dadashazar H, Painemal D, Alipanah M, Brunke M, Chellappan S, Corral A F, Crosbie E, Kirschler S, Liu H, Moore R H, Robinson C, Scarino A J, Shook M, Sinclair K, Thornhill K L, Voigt C, Wang H, Winstead E, Zeng X, Ziemba L, Zuidema P and Sorooshian A (2021). Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors. Atmospheric Chemistry and Physics, 21 (13), 10499. https://doi.org/10.5194/acp-21-10499-2021


Braun R A, McComiskey A, Tselioudis G, Tropf D and Sorooshian A (2021). Cloud, Aerosol, and Radiative Properties Over the Western North Atlantic Ocean, Journal of Geophysical Research: Atmospheres. Journal of Geophysical Research: Atmospheres, 126 (14), https://doi.org/10.1029/2020jd034113


Edwards E-L, Corral A F, Dadashazar H, Barkley A E, Gaston C J, Zuidema P and Sorooshian A (2021). Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida. Atmospheric Environment, 254 11837. https://doi.org/10.1016/j.atmosenv.2021.118371


Aldhaif A M, Lopez D H, Dadashazar H, Painemal D, Peters A J and Sorooshian A (2021). An Aerosol Climatology and Implications for Clouds at a Remote Marine Site: Case Study Over Bermuda. Journal of Geophysical Research: Atmospheres, 126 (9), https://doi.org/10.1029/2020jd034038


Corral A F, Braun R A, Cairns B, Gorooh V A, Liu H, Ma L, Mardi A H, Painemal D, Stamnes S, van Diedenhoven B, Wang H, Yang Y, Zhang B and Sorooshian A (2021). An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry. Journal of Geophysical Research: Atmospheres, 126 (4), https://doi.org/10.1029/2020jd032592


Painemal D, Corral A F, Sorooshian A, Brunke M A, Chellappan S, Afzali Gorooh V, Ham S, O’Neill L, Smith W L Jr, Tselioudis G, Wang H, Zeng X and Zuidema P (2021). An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast—Part 2: Circulation, Boundary Layer, and Clouds. Journal of Geophysical Research: Atmospheres, 126 (6), https://doi.org/10.1029/2020jd033423


Ma L, Dadashazar H, Hilario M R A, Cambaliza M O, Lorenzo G R, Simpas J B, Nguyen P and Sorooshian A (2021). Contrasting wet deposition composition between three diverse islands and coastal North American sites. Atmospheric Environment, 244 11791. https://doi.org/10.1016/j.atmosenv.2020.117919


Corral A F, Dadashazar H, Stahl C, Edwards E-L, Zuidema P and Sorooshian A (2020). Source Apportionment of Aerosol at a Coastal Site and Relationships with Precipitation Chemistry: A Case Study over the Southeast United States. Atmosphere, 11 (11), 1212. https://doi.org/10.3390/atmos11111212


Park H J, Sherman T, Freire L S, Wang G, Bolster D, Xian P, Sorooshian A, Reid J S and Richter D H (2020). Predicting Vertical Concentration Profiles in the Marine Atmospheric Boundary Layer With a Markov Chain Random Walk Model. JGR Atmospheres, 125 (19), https://doi.org/10.1029/2020JD032731


Crosbie E, Shook M A, Ziemba L D, Anderson B E, Braun R A, Brown M D, Jordan C E, MacDonald A B, Moore R H, Nowak J B, Robinson C E, Shingler T, Sorooshian A, Stahl C, Thornhill K L, Wiggins E B and Winstead E (2020). Coupling an online ion conductivity measurement with the particle-into-liquid sampler: Evaluation and modeling using laboratory and field aerosol data. Aerosol Science and Technology, (12), 1542. https://doi.org/10.1080/02786826.2020.1795499


MacDonald A B, Hossein Mardi A, Dadashazar H, Azadi Aghdam M, Crosbie E, Jonsson H H, Flagan R C, Seinfeld J H and Sorooshian A (2020). On the relationship between cloud water composition and cloud droplet number concentration. Atmospheric Chemistry and Physics, https://doi.org/10.5194/acp-20-7645-2020


Painemal D, Chang F-L, Ferrare R, Burton S, Li Z, Smith Jr. W L, Minnis P, Feng Y and Clayton M (2020). Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations. Atmospheric Chemistry and Physics, 20 (12), https://doi.org/10.5194/acp-20-7167-2020


Schulze B C, Charan S M, Kenseth C M, Kong W, Bates K H, Williams W, Metcalf A R, Jonsson H H, Woods R, Sorooshian A, Flagan R C and Seinfeld J H (2020). Characterization of Aerosol Hygroscopicity Over the Northeast Pacific Ocean: Impacts on Prediction of CCN and Stratocumulus Cloud Droplet Number Concentrations. Earth and Space Science, 7 (7), https://doi.org/10.1029/2020EA001098


Schlosser J S, Dadashazar H, Edwards E, Hossein Mardi A, Prabhakar G, Stahl C, Jonsson H H and Sorooshian A (2020). Relationships Between Supermicrometer Sea Salt Aerosol and Marine Boundary Layer Conditions: Insights From Repeated Identical Flight Patterns. JGR Atmospheres, 125 (12), https://doi.org/10.1029/2019JD032346


Dadashazar H, Crosbie E, Majdi M S, Panahi M, Moghaddam M A, Behrangi A, Brunke M, Zeng X, Jonsson H H and Sorooshian A (2020). Stratocumulus cloud clearings: statistics from satellites, reanalysis models, and airborne measurements. Atmospheric Chemistry and Physics, 20 (8), 4637. https://doi.org/2020-04-21


Aldhaif A M, Lopez D H, Dadashazar H and Sorooshian A (2020). Sources, frequency, and chemical nature of dust events impacting the United States East Coast. Atmospheric Environment, 231 https://doi.org/10.1016/j.atmosenv.2020.117456


Sorooshian A, Corral A F, Braun R A, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb M M, Hossein Mardi A, Maring H, McComiskey A, Moore R, Painemal D, Scarino A J, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L and Zuidema P (2020). Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JCR Atmospheres, 125 (6), https://doi.org/10.1029/2019JD031626


Gryspeerdt E, Mülmenstädt J, Gettelman A, Malavelle F F, Morrison H, Neubauer D, Partridge D G, Stier P, Takemura T, Wang H, Wang M and Zhang K (2020). Surprising similarities in model and observational aerosol radiative forcing estimates. Atmospheric Chemistry and Physics, 20 (1), https://doi.org/10.5194/acp-20-613-2020


Yu H, Yang Y, Wang H, Tan Q, Chin M, Levy R C, Remer L A, Smith S J, Yuan T and Shi Y (2020). Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmospheric Chemistry and Physics, 20 (1), 139. https://doi.org/10.5194/acp-20-139-2020


Hossein Mardi A, Dadashazar H, MacDonald A B, Crosbie E, Coggon M M, Azadi Aghdam M, Woods R K, Jonsson H H, Flagan R C, Seinfeld J H and Sorooshian A (2019). Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. Atmospheres, 124 (22), 12301. https://doi.org/10.1029/2019JD031159


Brunke M A, Ma P, Reeves Eyre J E J, Rasch P J, Sorooshian A and Zeng X (2019). Subtropical Marine Low Stratiform Cloud Deck Spatial Errors in the E3SMv1 Atmosphere Model. Geophysical Research Letters, 46 (21), 12598. https://doi.org/10.1029/2019GL084747


Sorooshian A, Anderson B, Bauer S E, Braun R A, Cairns B, Crosbie E, Dadashazar H, Diskin G, Ferrare R, Flagan R C, Hair J, Hostetler C, Jonsson H H, Kleb M M, Liu H, MacDonald A B, McComiskey A, Moore R, Painemal D, Russell L M, Seinfeld J H, Shook M, Smith W L, Thornhill K, Tselioudis G, Wang H, Zeng X, Zhang B, Ziemba L and Zuidema P (2019). Aerosol–Cloud–Meteorology Interaction Airborne Field Investigations: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. Bulletin of the American Meteorological Society, 100 (8), 1511. https://doi.org/10.1175/bams-d-18-0100.1


Fanourgakis G S, Kanakidou M, Nenes A, Bauer S E, Bergman T, Carslaw K S, Grini A, Hamilton D S, Johnson J S, Karydis V A, Kirkevåg A, Kodros J K, Lohmann U, Luo G, Makkonen R, Matsui H, Neubauer D, Pierce J R, Schmale J, Stier P, Tsigaridis K, van Noije T, Wang H, Watson-Parris D, Westervelt D M, Yang Y, Yoshioka M, Daskalakis N, Decesari S, Gysel-Beer M, Kalivitis N, Liu X, Mahowald N M, Myriokefalitakis S, Schrödner R, Sfakianaki M, Tsimpidi A P, Wu M and Yu F (2019). Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. Atmospheric Chemistry and Physics, 19 (13), 8591. https://doi.org/10.5194/acp-19-8591-2019