

SUbsonic aircraft:
Contrail & Clouds Effects
Special Study
(SUCCESS) University of
Utah Polarization
Diversity LIDAR (PDL)
Langley DAAC Data Set
Document

Summary:

SUCCESS is a NASA field program using scientifically instrumented aircraft and ground based measurements to investigate the effects of subsonic aircraft on contrails, cirrus clouds and atmospheric chemistry. The experiment is cosponsored by NASA's Subsonic Assessment Program and the Radiation Sciences Program which are part of the overall Aeronautics and Mission to Planet Earth Programs, respectively. SUCCESS has well over a hundred direct participants from several NASA Centers, other agencies, universities and private research companies. Additional information can be found at the SUCCESS Home Page.

SUCCESS coordinated with the Department of Energy's Atmospheric Radiation Measurements Program (ARM) which operates the Clouds and Radiation Testbed (CART) site located in Northern Oklahoma, and Southern Kansas. In addition to the extensive ground based measurements at the CART site, ARM also made airborne measurements with the scientifically instrumented Remotely Piloted Aircraft (RPA).

This document describes the SUCCESS_UTAH_PDL dataset, which contains ground-based measurements made by the University of Utah Polarization Diversity LIDAR at the CART site during the April-May 1996 SUCCESS Mission.

Table of Contents:

- 1. Data Set Overview
- 2. Investigator(s)
- 3. Theory of Measurements
- 4. Equipment
- 5. Data Acquisition Methods
- 6. Observations
- 7. Data Description
- 8. Data Organization
- 9. Data Manipulations
- 10. Errors
- 11. Notes
- 12. Application of the Data Set
- 13. Future Modifications and Plans
- 14. Software
- 15. Data Access
- 16. Output Products and Availability
- 17. References
- 18. Glossary of Terms
- 19. <u>List of Acronyms</u>
- 20. Document Information

1. Data Set Overview:

Data Set Identification:

SUCCESS UTAH PDL:

SUbsonic aircraft: Contrail & Clouds Effects Special Study (SUCCESS) University of Utah Polarization Diversity LIDAR (PDL) Data Set Document

Data Set Introduction:

In support of all NASA SUCCESS aircraft missions into the vicinity of the DOE Southern Great Plains CART site (36.605 degrees N, 97.488 degrees W) near Lamont, OK, ground-based remote sensing measurements were collected by a mobile remote sensing platform from the University of Utah, including the dual-wavelength scanning Polarization Diversity LIDAR (PDL), coaligned midinfrared radiometer and video recorder, and all-sky video and 35-mm photography. Additional data were obtained at other times during periods of cirrus cloudiness and from extensive fields of contrails generated by local commercial jet aircraft. A radar-based laser safety shutdown device for automatic aircraft identification was successfully tested using a variety of aircraft, allowing PDL scans of cirrus and contrails to be made for the first time. Exceptionally high resolution PDL data were also obtained at 1.5-m range and 0.1-s time resolutions, revealing a surprising amount of fine scale structures in cirrus clouds and contrails.

A preliminary inspection of the SUCCESS PDL dataset reveals that although portions of contrails created by the participating NASA aircraft were sampled, the extensive fields of contrails from nearby commercial jet corridors, including subvisual sheets of spreading contrails, were the most notable and extensively studied.

Objective/Purpose:

The purpose of PDL participation in the SUCCESS field program is to collect supporting in situ and multiple remote sensor data for use in the validation of remote sensing technniques and algorithms for retrieving various cloud microphysical and radiative quantities, and to increase general understanding of contrails and cirrus clouds.

Summary of Parameters:

LIDAR Relative Backscatter

Discussion:

Related Data Sets:

2. Investigator(s):

Investigator(s) Name and Title:

Kenneth Sassen 819 WBB Department of Meteorology University of Utah Salt Lake City, UT 84112-0110 USA

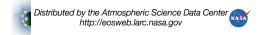
Phone: 801-585-9492 FAX: 801-585-3681

E-mail: ksassen@atmos.met.utah.edu

Title of Investigation:

SUbsonic aircraft: Contrail & Clouds Effects Special Study (SUCCESS) University of Utah Polarization Diversity LIDAR (PDL)

Contact Information:


Ching-yu Hsueh
Department of Meteorology
University of Utah
Salt Lake City, UT 84112-0110
USA

Phone: 801-585-9491 FAX: 801-585-3681

E-mail: chsueh@atmos.met.utah.edu

3. Theory of Measurements:

4. Equipment:

Sensor/Instrument Description: A description of the lidar is given in Sassen, K., 1994: "Advances in polarization diversity lidar for cloud remote sensing," *Proc. IEEE*, 82, 1907-1914 Collection Environment: Source/Platform: Ground Station

LIDAR Relative Backscatter

Key Variables:

Principles of Operation:

Sensor/Instrument Measurement Geometry:

Manufacturer of Sensor/Instrument:

Source/Platform Mission Objectives:

Sensor/Instrument:

LIDAR

Calibration:

Specifications:

Tolerance:

Frequency of Calibration:

Other Calibration Information:

5. Data Acquisition Methods:

6. Observations:

Data Notes:

Field Notes:

7. Data Description:

Spatial Characteristics:

Spatial Coverage:

Data Set	Min Lat	Max Lat	Min Lon	Max Lon
SUCCESS_UTA H_PDL	36.60	36.60	-97.49	-97.49

Spatial Coverage Map:

Spatial Resolution:

Data collected at 1.5 m to 6.0 m vertically and averaged to 30 m for archive

Projection:

Grid Description:

Temporal Characteristics:

Temporal Coverage:

SUCCESS_UTAH_PDL 04-12-1996

05-02-1996

Temporal Coverage Map:

Temporal Resolution:

Averaged to 10 seconds

Data Characteristics:

Parameter/Variable:

LIDAR Relative Backscatter

Variable Description/Definition:

Relative backscattered LIDAR signals from air, aerosols and clouds, background substracted, not corrected for range and attenuation effects.

Unit of Measurement:

Arbitrary units

Data Source:

Ground site, LIDAR backscattered return signal at 1064 nm

Data Range:

Minimum value=0, Maximum value=204800, Scaling Factor=100

Sample Data Record:

YEAR=1996 Month= 4 DAY=12 Hour=18 MINUTE=57 SECOND=40 TIME_INT=10 HIGHT_INT=30 POINTS= 409 HIGHT_BOT= HIGHT_TOP= 12270

398	394	382	376	356	348	314	280
248	244	220	208	208	202	198	198
198	198	198	196	198	194	190	188
188	184	184	176	176	172	172	174
164	172	152	160	146	160	144	146
132	130	144	140	138	140	144	132
142	136	132	132	130	128	138	128
116	120	112	106	114	108	88	112
108	116	128	152	168	184	190	190
198	204	220	242	256	268	274	248
212	212	202	196	196	198	196	190
188	182	166	158	146	138	138	124
122	108	106	106	92	90	100	84
82	66	84	78	92	88	108	144
212	394	682	1082	1570	2150	2772	3472
4148	4684	5000	5112	4944	4732	4524	4322
4192	4067	3942	3788	3626	3498	3360	3236
3104	2972	2820	2674	2500	2368	2230	2096
1972	1844	1720	1610	1496	1398	1298	1218
1128	1042	974	902	828	772	716	636
600	584	540	464	412	396	376	312
242	204	198	196	188	180	164	128
108	64	64	64	70	84	114	126
144	156	148	158	160	146	130	84
68	46	44	24	22	8	20	4
8	0	6	8	2	4	4	4
4	4	2	4	0	8	2	2
6	0	0	2	2	0	0	0
0	0	0	2	0	2	0	0
0	2	0	0	2	0	0	2
0							

8. Data Organization:

Data Granularity:

PDL data granules are composed of one or more files of data acquired on a given day.

A general description of data granularity as it applies to the IMS appears in the **EOSDIS Glossary**.

Data Format:

The PDL data files are ASCII data. The files contain data records where each record consists of an eleven line header section followed by the data values. Units in the header section are seconds for the Time Interval and meters for the height parameters.

9. Data Manipulations:

Derivation Techniques and Algorithms:

Data Processing Sequence:

Processing Steps:

Processing Changes:

Calculations:

Special Corrections/Adjustments:

Calculated Variables:

Graphs and Plots:

addity Addedoment.
Data Validation by Source:
Confidence Level/Accuracy Judgement:
Measurement Error for Parameters:
Additional Quality Assessments:
Data Verification by Data Center:
The Landley DAAC performs an inspection process on data received by the data producer via ftp. The DAAC checks to see it

The Langley DAAC performs an inspection process on data received by the data producer via ftp. The DAAC checks to see if the data transfer completed and the data were delivered in their entirety. An inspection software was developed by the DAAC to make sure every granule is readable. The code also checks to see if every data value falls within the range specified by the data producer. This same code extracts the metadata required for ingesting the data into the IMS. If any discrepancies are found, the data producer is contacted. The discrepancies are corrected before the data are archived at the DAAC.

11. Notes:

10. Errors:

Sources of Error:

Quality Assessment

Limitations of the Data:

Known Problems with the Data:

Usage Guidance:

Any Other Relevant Information about the Study:

12. Application of the Data Set:

13. Future Modifications and Plans:

14. Software:

No read software was developed for this data.

Software Description:

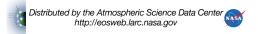
Not applicable.

Software Access:

Not applicable.

15. Data Access:

Contact Information:


Langley DAAC User and Data Services Office NASA Langley Research Center Mail Stop 157D Hampton, Virginia 23681-2199 USA

Telephone: (757) 864-8656 FAX: (757) 864-8807

E-mail: support-asdc@earthdata.nasa.gov

Data Center Identification:

Langley DAAC User and Data Services Office NASA Langley Research Center Mail Stop 157D Hampton, Virginia 23681-2199 USA

Telephone: (757) 864-8656 FAX: (757) 864-8807

E-mail: support-asdc@earthdata.nasa.gov

Procedures for Obtaining Data:

The Langley DAAC Information Management System (IMS) is an on-line system that features a graphical user interface (GUI) which allows users to query the Langley DAAC data set holdings, to view pre-generated browse products, and to order specific data products.

The Langley DAAC User and Data Services (UDS) staff provides technical and operational support for users ordering data.

Data Center Status/Plans:

16. Output Products and Availability:

17. References:

Sassen, K., 1994: "Advances in polarization diversity lidar for cloud remote sensing," Proc. IEEE, 82, 1907-1914

Sorlie, S., February 1993. "Langley DAAC Handbook." NASA/Langley Research Center, Hampton, Virginia.

18. Glossary of Terms:

EOSDIS Glossary.

19. List of Acronyms:

NASA - National Aeronautics Space Administration URL - Uniform Resource Locator

EOSDIS Acronyms.

20. Document Information:

Document Revision Date:

October 7, 1997; November 24, 1997

Document Review Date:

Document ID:

...

Citation:

Document Curator:

Langley DAAC User and Data Services Office

Telephone: (757) 864-8656 FAX: (757) 864-8807

E-mail: support-asdc@earthdata.nasa.gov